LAND SUITABILITY ASSESSMENTS FOR SELECTED CROPS IN PAPUA NEW CUINEA

J. Burgham

B.B. Trangmar, D.J. Gi and T.J. Savage

PNG

prepared by Landcare Research Commonwealth Sein

LAND SUITABILITY ASSESSMENTS FOR SELECTED CROPS IN PAPUA NEW GUINEA

B.B. Trangmar, D.J. Giltrap, S.J. Burgham and T.J. Savage

PNGRIS Publication No. 8

prepared by Landcare Research New Zealand Ltd on contract to Commonwealth Scientific and Industrial Research Organisation for Australian Agency for International Development

May 1995

Published by Australian Agency for International Development, Canberra Australia 2601

© Commonwealth of Australia 1995

This work is copyright. Apart from any fair dealing for the purposes of study, research, criticism or review, as permitted under the *Copyright Act*, no part may be reproduced without written permission of the Australian Agency for International Development and the Papua New Guinea Government.

Bibliographic Reference:

B.B. Trangmar, D.J. Giltrap, S.J. Burgham and T.J. Savage. 1995. Land Suitability Assessments for Selected Crops in Papua New Guinea. PNGRIS Publication No. 8 (AusAID: Canberra.) 84p.

National Library of Australia Cataloguing-in-Publication data:

Land suitability assessments for selected crops in Papua New Guinea.

Bibliography. ISBN 0 642 19609 5.

Crops and soils - Papua New Guinea - Data processing.
 Land capability for agriculture - Papua New Guinea - Data processing.
 Oil palm - Soils - Papua New Guinea.
 Coffee - Soils - Papua New Guinea. I. Trangmar, B. B.
 (Bruce Blair), 1952-. II. Australian Agency for International Development. III. Landcare Research New Zealand. IV.
 CSIRO. (Series : PNGRIS publication ; no. 8).

631.49953

Cover photograph of coastal plain south of Kieta Editing, design and typesetting byPenInfo, Mooloolah Australia 4553 Printed by Queensland Complete Printing Services, Nambour Australia 4560

ABSTRACT

Methodology for the application of computerized land suitability assessment systems with the Papua New Guinea Resource Information System (PNGRIS) is presented. These systems comprise a land suitability model for arabica coffee production (Harding *et al.* 1986), tree and cash crops described in the Papua New Guinea Land Evaluation System (PNGLES) (Venema and Daink 1992). The methodology is tested for arabica coffee production and oil palm in Papua New Guinea for the major environment classes in Papua New Guinea (PNG) and for resource mapping units defined in PNGRIS. Land suitability for arabica coffee and oil palm production in PNG is mapped. The computerized land evaluation system for arabica coffee production is described. Results of the land suitability assessments for arabica coffee production based on the Harding *et al.* (1986) and PNGLES systems are compared. Recommendations are made for further development and validation of the land evaluation systems used. Procedures for data transfer between PNGRIS and the land evaluation systems are described.

ACKNOWLEDGEMENTS

Under an agreement between the Papua New Guinea Government and the Australian Agency for International Development (AusAID), the Commonwealth Scientific and Industrial Research Organisation (CSIRO) has contracted to further develop the Papua New Guinea Resource Information System (PNGRIS) and its applications. This publication is one of a series produced under that contract. The work reported here was conducted by Landcare Research New Zealand Ltd on subcontract to CSIRO.

Francis Daink, Land Use Officer, Land Use Section, Department of Agriculture and Livestock, Papua New Guinea is thanked for his assistance in providing land evaluation models of the Papua New Guinea Land Evaluation System (PNGLES) for use in this study. Dr. Clive Hackett is thanked for his advice in the application of PLANTGRO. Balthazar Wayi, Director, Research Division, Department of Agriculture and Livestock is thanked for his support and advice in developing the methods described in this report.

The assistance of Michael Siri and David Freyne in evaluating the land evaluation results are gratefully acknowledged.

ABBREVIATIONS

ALES	Automated Land Evaluation System
AusAID	Australian Agency for International Development
CSIRO	Commonwealth Scientific and Industrial Research Organisation (Australia)
DAL	Department of Agriculture and Livestock (PNG)
FAO	Food and Agriculture Organization
LRU	land resource unit
LUR	land use requirements
LUT	land utilisation type
PNG	Papua New Guinea
PNGLES	Papua New Guinea Land Evaluation System
PNGRIS	Papua New Guinea Resource Information System
RMU	resource mapping unit

CONTENTS

AE	BSTRA	ACT	iii
AC	CKNO	WLEDGEMENTS	iv
AF	BBRE	VIATIONS	iv
1.	INTR	ODUCTION	1
	1.1	Background and objectives	1
2.	LAN	D EVALUATION SYSTEMS	2
	2.1 2.2 2.3 2.4 2.5	Review of land evaluation in PNG Arabica coffee land evaluation model Papua New Guinea Land Evaluation System (PNGLES) PLANTGRO Other land evaluation systems used in PNG	2 3 12 14 16
3.	MET	HODOLOGY	18
	3.1 3.2 3.3	Classification of physical environments of PNG Land evaluation procedures Data transfer from PNGRIS to PLANTGRO	18 20 22
4.	RESU	JLTS	4
	4.1 4.2 4.3 4.4 4.5	Physical environments of PNG Land suitability for arabica coffee by environment subclass and RMU Land suitability for oil palm Land suitability for other crops PLANTGRO ratings for Upper Ramu test area	23 26 34 34 36
5.	DISC	CUSSION	38
	5.1 5.2 5.3 5.4 5.5	Model validation requirements Scale factors in land use suitability assessment Adjustment of rating criteria in relation to management conditions Application of land evaluation models Future model development	38 38 39 39 39
6.	CON	ICLUSIONS	40
R	EFER	ENCES	41
A	NNEX	KES	

1.	Procedures for extracting soils data from PNGRIS for entry to PLANTGRO	43
2.	Definitions of PNGRIS attributes used to define environment subclasses	47
3.	Summary of crop suitability ratings for PNGRIS RMUs and median environment	48
	subclasses according to PNGLES	

TABLES

1.	Drainage/effective soil depth suitability classes for high input coffee production	4
2.	Drainage/effective soil depth suitability classes for low input coffee production	4
3.	Altitude/temperature suitability classes for coffee production	5
4.	Mean annual rainfall suitability classes for coffee production	5 5
5.	Factors and classes comprising the erosion hazard index	6
6.	Erosion hazard index suitability classes	6
7.	Soil fertility index factors, critical values and index points	7
8.	Soil fertility index suitability classes	7
9.	Suitability classes and points allocated to each diagnostic factor	8
10.	Conversion of suitability points into a land suitability classification	8
11.	Land characteristic classes which required translation from PNGRIS/RAMU	9
	databases for use in the Harding et $al.$ (1986) coffee model	
12.	Erodibility classes of Soil Taxonomy great groups in PNG	10
13.	PNGLES land qualities and land characteristics	13
14.	Soil data inputs required for PLANTGRO	15
15.	Climatic data inputs required for PLANTGRO	15
16.	Environment types, subtypes and subclasses	19
17.	Environment types, subtypes, areas and number of RMUs	23
18.	Areas of suitability classes for arabica coffee production based on environment	26
	subclasses	
19.	Areas of suitability classes for low input arabica coffee production based on	28
	PNGRIS RMUs	
20.	Areas of suitability classes for high input arabica coffee production based on	29
	PNGRIS RMUs	
21.	Comparison of suitability ratings for PNGRIS RMUs using the PNGLES	30
	and Harding et al. (1986) low input arabica coffee models	
22.	Comparison of suitability classes for high input arabica coffee production using	32
	models of PNGLES and Harding et al. (1986)	
23.	Comparison of suitability classes for low input arabica coffee production using	33
	models of PNGLES and Harding et al. (1986)	
24.	Areas of suitability classes for oil palm production based on PNGRIS RMUs	35
25.	PLANTGRO ratings and main limitations for selected crops and PNGRIS	36
	RMUs, Upper Ramu catchment, Eastern Highlands Province	
0.04	£_	11 72

MAPS

following 73

- 1. Major environment types, Papua New Guinea
- 2. Suitability of environment subtypes for low input arabica coffee production (Harding model)
- 3. Suitability of environment subtypes for high input arabica coffee production (Harding model)
- 4. Suitability of PNGRIS RMUs for low input arabica coffee production (Harding model)
- 5. Suitability of PNGRIS RMUs for high input arabica coffee production (Harding model)
- 6. Suitability of PNGRIS RMUs for oil palm production

1. INTRODUCTION

1.1 Background and objectives

The Papua New Guinea Resource Information System (PNGRIS) is a micro-computer-based georeferenced database containing information on natural resources, population distribution, rural land use, small-holder economic activity and land use potential (Bellamy 1986). It is compiled at 1:500 000 scale for approximately 5000 Resource Mapping Units (RMUs) covering the entire land area of Papua New Guinea (PNG).

Two potential applications of PNGRIS are:

- 1) identification of areas of PNG which, given certain criteria, would be suitable for particular types of land use, and
- 2) determination of the most suitable type(s) of land use for specific land areas.

The land resource data in PNGRIS is appropriate for broad-scale agricultural land use suitability assessment at national and provincial level. A number of studies have conducted general (Haantjens *et al.* 1967, Bleeker 1975, Hackett 1988) and crop-specific (Bleeker and Freyne 1981, Venema and Daink 1992) agricultural land suitability assessments for PNG. Of these studies, only Venema and Daink (1992) have applied PNGRIS for such purposes. Venema and Daink (1992) computed suitability ratings for 22 crops for all PNGRIS RMUs but the results were stored in a database and not mapped. As a result, no spatial assessment of crop suitability was presented.

The structure of most land evaluation systems partition land on the basis of physical and climatic characteristics. A similar partitioning of PNG's physical environment was done by McAlpine (unpub.) in 1987. McAlpine identified 235 discrete environmental combinations in PNG differentiated on the basis of landform, altitude, rainfall, slope, rock type, and inundation. Ideally, physical land suitability for specific crops should be broadly similar within the same environment class when considering land use suitability for different crops on a nation-wide scale. As a result, the environment classes defined by McAlpine should be useful in partitioning the physical environment of PNG for broad-scale agricultural development planning.

The objectives of this study were to:

- 1) Develop procedures for application of land resource data from PNGRIS with computerized land evaluation systems to assess crop suitability for PNGRIS RMUs and the major environmental types of PNG;
- 2) Compute land use suitability ratings for a range of crops using coffee as a detailed test crop;
- 3) Prepare sample maps on suitability of major environments and PNGRIS RMUs for selected cash crops.

This report describes the:

- land evaluation systems used in the study;
- procedures used in applying PNGRIS data with these systems;
- development and application of a computerized land evaluation system for arabica coffee production;
- results of the crop suitability analyses.

2. LAND EVALUATION SYSTEMS

2.1 Review of land evaluation in PNG

Land evaluation systems have been used with land resource survey data in PNG since the 1960's to assess land suitability for agricultural development. Haantjens (1963, 1969) developed the "Agricultural Land Classification" for arable crops, tree crops, improved pastures and paddy rice. This system was developed during the CSIRO regional land resource surveys of the 1950's and early 1960's. It is based largely on physical properties of the land. Hartley *et al.* (1967) defined five potential land use classes for horticulture in a survey in West New Britain. Bleeker (1975) used the main elements of Haantjens' system to produce national 1:1 000 000 scale maps of physical land limitations (9 classes) and agricultural land use potential for the four major land use types defined by Haantjens.

These early land evaluation systems were developed for the major groups of agricultural crops and were not crop-specific. As the amount of resource data for PNG has increased and agricultural development has proceeded, a number of crop-specific land evaluation systems were developed. These included systems for cocoa production (Bleeker and Freyne 1981, Wayi 1987), sweet potato (Radcliffe 1983), and coffee (Harding *et al.* 1986). A crop eco-physical land evaluation system (ECOPHYS) (Hackett 1988) was also introduced as part of PNGRIS. However, ECOPHYS has not been widely used by staff of the Department of Agriculture and Livestock (DAL) Land Use Section and has not been widely tested in PNG.

The system currently used most widely by DAL staff is the Papua New Guinea Land Evaluation System (PNGLES) developed by Venema and Daink (1992). This system is based on the FAO Framework for Land Evaluation (FAO 1976). It provides a systematic land evaluation method for the production of 18 crops at two levels of management input. Decision trees for each of the 18 crops have been developed within the computerized framework provided by the Automated Land Evaluation System (ALES) (Rossiter and Van Wambeke 1991). Crop suitability ratings for the above crops have been computed for each province in PNG using the land resource data in PNGRIS (1:500 000 scale). PNGLES is currently being tested in soil and land resource surveys at more detailed scale by DAL Land Use Section staff. The PNGLES decision tree models for citrus, potato and pincapple were used as part of the land evaluation process in the Upper Ramu land resource survey (Trangmar *et al.* 1995a).

A crop physiological evaluation system (PLANTGRO) (Hackett 1991) is also currently being evaluated in PNG. PLANTGRO places more emphasis on crop physiological response to climate and soil factors. It is more appropriate for site-specific crop suitability assessments than the other systems listed above. The other systems have less rigorous climatic parameters and are easier to use with land resource survey data in which climatic variation is described in only a general way. As such PLANTGRO complements the other systems for site-specific application.

In this study the arabica coffee model of Harding *et al.* (1986) was computerized using the ALES package and suitability ratings generated for each environment subclass and PNGRIS RMU. Ratings for all PNGLES models were computed for each environment subclass and PNGRIS RMUs. Procedures for applying PLANTGRO with PNGRIS were developed and tested in a pilot study area.

2.2 Arabica coffee land evaluation model

2.2.1 Introduction

Harding *et al.* (1986) developed a comprehensive system of land evaluation for rainfed arabica coffee production in PNG. The system is also based on the FAO (1976) framework and is a qualitative classification for two land utilization types (LUT). These are a high input system (coffee estates and managed blocks) and a low input system (small-holders).

Seven diagnostic criteria are recommended for evaluating the land suitability of individual sites, namely drainage/effective soil depth, air temperature, mean annual rainfall, erosion hazard, soil chemical fertility, site accessibility and present land use. Land resource data required to derive these criteria are:

Soil drainage class Altitude (surrogate for temperature) Erosion hazard (rainfall erosivity, soil erodibility, slope) Fertility (total N, P retention, Exch. K, Mg, CEC, pH) Effective rooting depth Mean annual rainfall

The methodology enables evaluations to be made of individual (uniform) sites and also large areas of variable land, such as provinces or catchments. However, evaluations of large areas of variable land depend on the ability to map the land resource data used to derive the diagnostic criteria to run the model. The system has been validated at provincial scale using Western Highlands as a test area (Harding *et al.* 1987) and also applied in the Upper Ramu Catchment for land resource data collected at 1:50 000 scale (Trangmar *et al.* 1995a). In the latter study the classification system was computerized using the ALES framework (Rossiter and Van Wambeke 1991). The computerized version of the model has been installed on computers in DAL Land Use Section, Port Moresby.

Procedures for extracting the relevant land resource data for each resource mapping unit and transferring it into ALES to run the coffee model were similar to those used in the Upper Ramu study (Trangmar *et al.* 1995a). These procedures were adapted for use with PNGRIS in this study to generate coffee suitability ratings for PNGRIS RMUs and environment subclasses.

2.2.2 Diagnostic Criteria

The key land characteristics and their suitability classes required to run the Harding *et al.* (1986) coffee model are described briefly below.

Drainage/effective soil depth

The rating for this diagnostic criterion is determined from the effective soil depth, the soil depth after drainage. The depth of free-draining soil, the presence or absence of limiting layers, and the presence/absence of slowly permeable horizons are all used to determine the effective soil depth (Tables 1 and 2). These are modified versions of the respective tables in Harding *et al* (1986), and do not consider the possible limitation of the absence of drainage outlets, because this attribute cannot be compiled on a map unit basis.

In the evaluation for arabica coffee production, the soil is regarded as being unsuitable if the depth to which plant roots can readily penetrate is less than 50 cm (Harding *et al.* 1986). All soils with an impenetrable layer (e.g. rock, concretionary layer) at depths of less than 50 cm, are rated as unsuitable (R4). Soils with a depth of free-draining soil of less than 20 cm cannot be drained to attain an effective soil depth of more than 50 cm, and are also rated as unsuitable.

Soils without an impenetrable layer at depths of less than 50 cm, but with 20-50 cm of free-draining soil, are rated as suitable (R3), provided the soil can be drained to achieve an effective soil depth exceeding 50 cm. In most cases, this can be achieved by installing closely-spaced drains to a depth of 1 m. Drainage is possible in both low- and high-input production systems, so the soils are rated as suitable (Rating R3). However, if the soils have either low vertical- or low horizontal drainage, deep ploughing or mole draining respectively will be required. In high-input production systems, such amelioration techniques are possible. As a result, slowly permeable soils with 20-50 cm of free-draining soil are rated as suitable (R3). In low-input systems mechanized drainage techniques are too costly, and such soils are rated as unsuitable (R4).

Table 1:Drainage/effective soil depth suitability classes for high input coffee production (after
Harding et al. 1986)

Suitability rating	Depth of free draining soil (cm)
R1	> 120
R2	50-120
R3	20-49
R4	< 50 over limiting layer
	< 20

Table 2:	Drainage/effective	soil	depth	suitability	classes	for	low	input	coffee	production
	(Source: Harding et	t al.	1986)							

Suitability rating	Depth of free draining soil (cm)	Presence of horizons with low vertical ¹ or horizontal ² permeability
R1	> 120	N/A
R2	50-120	N/A
R 3	20-49	absent
R4	20-49	present
	< 50 over limiting layer	N/A
	< 20	N/A

¹ Low vertical permeability in any one horizon indicates that deep ploughing is necessary

² Low horizontal permeability indicates that mole draining will be necessary

Altitude

Arabica coffee production is directly related to temperature - both very low and very high temperatures can seriously affect production. In PNG a strong correlation exists between temperature and altitude. Altitude is therefore used as a diagnostic criterion (Table 3) for evaluation of suitability for coffee production (Harding *et al.* 1986).

Suitability rating	Altitude (metres a	÷	temp.	m annual range C)	Minimur temp. (°t	range
	High input LUT	Low input LUT	High input	Low input	High input	Low input
R1	1300-1699	1300-1699	26-24	26-24	15-13	15-13
R2	1100-1299	1100 - 1299	28-26	28-26	16-15	16-15
	1700-1899	1700-1899	24-22	24-22	13-12	13-12
R3	1000-1099	600-1099	28-27	31-27	17-16	19-16
	1900-2000	1900-2100	24-21	22 - 21	12-11	12-11
R4	<1000	<600	>28	>22	>16	>19
	>2000	>2100	<21	<21	<11	<11

Table 3:	Altitude/temperature	suitability	classes	for	coffee	production	(after	Harding	et	al.
	1986)									

Mean annual rainfall

Mean annual rainfall is an important climatic characteristic for arabica coffee production. Suitability ratings for rainfall classes are given in Table 4.

Table 4:Mean annual rainfall suitability classes for coffee production (Source: Harding *et al.*1986)

Suitability rating	Mean annual rainfall (mm)
R1	2000-2999
R3	1500-1999 3000-4000
R4	<1500 >4000

Erosion hazard

In the humid tropics, rates of natural soil erosion are generally low due to the formation of a protective cover of vegetation. However if the vegetation is removed, accelerated soil erosion occurs, particularly in areas which receive high intensity rainfall (Harding *et al.* 1986).

In this evaluation, three factors that contribute to soil erosion by water: rainfall erosivity, soil erodibility, and slope, are all used to derive an erosion hazard index, by adding together the index points for each factor (Table 5). The suitability rating is determined from the numerical value of the erosion hazard index (Table 6). The critical values for each suitability rating are different for high-input and low-input coffee production.

Factor and units		Critical values	and index points	
	1	2	3	4
Rainfall Erosivity (erosivity class ¹⁾	Low	Moderate	High	Very High
Soil erodibility (erodibility class ²)	Very Low	Low	Moderate	High
Slope (°)	0-8	9-16	17-32	>32

 Table 5:
 Factors and classes comprising the erosion hazard index (Source: Harding et al. 1986)

Rainfall erosivity is a function of maximum monthly precipitation and annual rainfall. Calculations of rainfall erosivity, using data from a network of existing rainfall stations across PNG have been made by Bleeker (1983). A map of rainfall erosivity classes for PNG is given in Harding *et al.* (1986).

² Soil erodibility describes the susceptibility of the soil to erosion, and has been shown to be dependent on the texture, organic matter content, structure, and permeability of the soil. Erodibility classes for PNG soils are given in Table 12.

 Table 6:
 Erosion hazard index suitability classes (after Harding et al. 1986)

Suitability rating	Erosion ha	izard index
_	High input LUT	Low input LUT
R1	3-4	3-5
R2	5-7	6-8
R3	8-10	9-11
R4	11-12 ¹	12

Or any land with slope $> 32^{\circ}$

1

1

Soil fertility

The inherent soil fertility is an important parameter for crop growth, particularly in low input management systems. Such systems are largely dependent on the soil for the supply of plant nutrients. In the arabica coffee model, total nitrogen, phosphate retention, exchangeable K, exchangeable Mg, cation exchange capacity, and pH are used to derive a chemical fertility index (Table 7). The importance of each of the above chemical properties to arabica coffee production, and their preferred range is given in Harding *et al.* (1986). The numerical value of the chemical fertility is used to determine the suitability ratings, the critical values being different for low-input and high-input production systems (Table 8).

Factor and units	Critical values and index points					
	1	2	3	4		
Total N (%)	<0.10	0.10-0.19	0.20-0.50	>0.50		
P retention (%)	>95	85-95	60-84	>60		
Exch. K (meq %)	<0.10	0.10-0.19	0.20-0.60	>0.60		
Exch. Mg (meq %)	< 0.30	0.30-0.59	0.60-1.00	>1.00		
ECEC (meq %)	<2	2-5	6-10	>10		
or CEC (meq %)	<5	5-10	11-25	>25		
pH	<4.5 >7.5	4.5-4.9 7.1-7.5	5.0-5.4 6.6 -7 .0	5.5-6.5		

Table 7:	oil fertility index factors, critical values and index points (Source: Harding et an	l.
	986)	

Table 8: Soil fertility index suitability classes (Source: Harding et al. 1986)

Suitability rating	Soil fertility index points			
	High input LUT	Low input LUT		
R1	>18	>20		
R2	13-18	15-20		
R3	8-12	10-14		
R4	<8	<10		

2.2.3 Land Suitability Class

For each of the diagnostic criteria described above, suitability points are assigned to each of suitability ratings, according to the relative importance of each (Table 9). The suitability points of a particular land unit are then added together to determine the suitability class (Table 10).

Diagnostic factor	Suitability rating and points					
	R1	R2	R3	R 4		
Drainage/effective soil depth	12	9	6	0		
Altitude	8	6	4	0		
Mean annual rainfall	4	n/a	2	0		
Erosion hazard	4	3	2	0		
Soil fertility	4	3	2	1		

 Table 9:
 Suitability classes and points allocated to each diagnostic factor (Source: Harding et al. 1986)

Table 10:Conversion of suitability points into a land suitability classification (after Harding et
al. 1986)

Suitability points	Land suitability class
>27	1 (Highly Suitable)
23-27	2 (Moderately Suitable)
17-22	3 (Marginally Suitable)
<17 or any suitability rating scoring zero	4 (Not Suitable)

2.2.4 Development of the model for arabica coffee production in ALES

A computerized decision tree model of the Harding *et al.* (1986) arabica coffee land evaluation system was developed using the ALES framework.

The land and soil attributes required to determine the suitability ratings for the diagnostic criteria, and thus the Land Suitability Class of the Harding *et al.* (1986) coffee model, were set up as Land Characteristics in ALES. However, the corresponding data in the PNGRIS/Upper Ramu databases did not always have the same number of classes and/or the same critical limits as those required by the Harding *et al.* (1986) model. Intermediate Land Characteristics corresponding exactly to those in the PNGRIS/Upper Ramu databases were set up. Decision trees were also set up that would translate the classes of these Land Characteristics to those of the Land Characteristics required by the ALES model. This was done using "Lc -> Lc" decision trees, where decision trees are set up for the each Land Characteristic required by the Harding model that did not have matching classes in the PNGRIS/Upper Ramu databases.

The classes of attributes in the PNGRIS/RAMU data set that required translation are shown in Table 11 below.

Land characteristic	Land characteristic class in PNGRIS/Upper Ramu databases	Land characteristic class of Harding <i>et al.</i> coffee model	
ECEC (meq/100g)	<10	2-5	
Altitude (m)	600-1200	600-999	
	1200-1800	1300-1699	
	1800-2400	2000-2099	
	1800-2100	1900-1999	
Slope (°)	5-10	0-8	
	10-20	9-16	
	20-30	17-32	
	>30	>32	
Total Nitrogen (%)	<0.2	0.10-0.19	
P Retention (%)	60-90	60-84	
	>90	>95	
Exchangeable K (meq/100g)	<0.2	0.10-0.19	
pH	6-7	6.6-7.0	
	5-6	5.0-5.4	
	<5	<4.5	
	7-8	7.1-7.5	
	>8	>7.5	

Table 11:	Land	characteristic	classes	which	required	translation	from	the	PNGRIS/RAMU
	databa	uses for use in	the Hard	ling et a	d. (1986)	coffee mode	1		

The Land Characteristic "depth of free draining soil" was derived from the data attribute "drainage class" in the PNGRIS/Upper Ramu database as follows:

Drainage Class (PNGRIS/Upper Ramu)	Depth of free draining soil
well drained	>120cm
imperfectly drained	50-120cm
poorly to very poorly drained	20-49cm
waterlogged (swampy)	<29cm

Soil erodibility was determined from the Soil Taxonomy great group, using Table A6.1 of Harding *et al.* (1986). A number of additional correlations were made (Table 12) where the great groups of PNGRIS were not listed by Harding *et al.* (1986).

Code	Class		l Taxonomy reat group	Description
1	Very low	Histosols Andisols	Humitropepts	Soils with high to very high organic matter content and moderate to rapid permeabilities. Granular to fin- crumby surface horizons.
2	Low	Argiudolls Hapludolls Rendolls Argiaquolls Endoaquolls Epiaquolls Argiustolls Calciustolls Haplustolls	Cryumbrepts Rhodudalfs Rhodustalfs Psammaquents Tropopsamments Ustipsamments Haplohumults Palehumults Plinthohumults	Soils with moderate organic matter content and moderate permeabilities.
3	Moderate	Cryaquepts Tropaquepts Cryochrepts Dystropepts Eutropepts Ustropepts Cryaquents Endoaquents Epiaquents Fluvaquents Hydraquents	Sulfaquents Tropofluvents Ustifluvents Cryorthents Troporthents Ustorthents Endoaqualfs Epiaqualfs Hapludalfs Haplustalfs Rhodudults	Generally slowly permeable soils with moderate organic matter content; the alluvial Entisols have low to moderate organic matter content, are massive and may have modera very fine sand and silt content.
4	High	Endoaquerts Hapluderts Haplusterts Halaquepts Plinthaquepts Albaqualfs Natrudalfs Natrustalfs Plinthaqualfs Natrustolls	Albaquults Endoaquults Epiaquults Paleaquults Plinthaquults Hapludults Paleudults Plinthudults Acrudox Hapludox	Endoaquerts: Very slowly permeable, often subject to surface scaling and have prismatic or coarse blocky structures, but moderate organ matter content. Hapludults and Epiaqualfs: generally relatively low organi matter content and relatively high very fine sand and silt content. Poorly structured topsoils.

Table 12:Erodibility classes of Soil Taxonomy great groups in PNG (after Bleeker 1983)

2.2.5 Land use requirements

The diagnostic criteria (rainfall, altitude, erosion hazard index, chemical fertility index, and drainage/effective soil depth) were established in ALES as Land Use Requirements (LUR) for coffee. The decision trees to determine suitability ratings (severity levels in ALES) followed the tables of Harding *et al.* (1986) described above. The soil chemical fertility index LUR required multiple land characteristics to be set up as Lc -> Lc decision trees to avoid complex decision trees for the LURs.

In the Upper Ramu study, the severity levels for erosion hazard index of Harding *et al.* (1986) were adjusted so that slopes exceeding 16 degrees were unsuitable for coffee production in the low input model, and slopes greater than 8 degrees were unsuitable in the high input model (D.F. Freyne *pers. comm.*). In the present study the severity levels for erosion hazard were those described in Harding *et al.* (1986)

2.2.6 Physical suitability subclass

The physical suitability class (1-4) and subclass (abbreviations of the LURs/diagnostic criteria) were derived by means of a decision tree, using all the possible permutations of the five LURs/diagnostic criteria, in combination with the "maximum limitation" method. The suitability classes 1-4 corresponded to the classes S1 (Highly Suitable), S2 (Moderately Suitable), S3 (Marginally Suitable), and S4 (Unsuitable) respectively of Harding *et al.* (1986).

In the decision tree, a suitability class was allocated to each permutation of the five LURs, using the suitability points defined in Tables 9 and 10. Branching of the decision tree was stopped when any one of the diagnostic criteria was maximally limiting (i.e. had a R4 rating and zero suitability points). This was done to reduce the number of possible permutations and the size of the decision tree. When any one of the diagnostic criteria had a R4 rating, the suitability class allocated was "4", and the subclass corresponded to the abbreviation of the maximally limiting LUR. Where more than one LUR was maximally limiting, the subclass only included the first maximally limiting LUR and would not include all the correct abbreviations. As a result, the "decision tree" method was combined with the "maximum limitation" method. This was done so that all the LURs which are potentially maximally limiting (i.e. drainage/effective soil depth, erosion hazard, altitude, and rainfall) were identified in the final physical suitability class allocated to each RMU.

2.2.7 Suitability ratings for compound RMUs

Many of the land units of both PNGRIS and the Upper Ramu catchment contain more than one soil great group. Each soil great group is unique, having a discrete set of attributes. This can result in different suitability ratings amongst soil great groups in the same RMU. Each soil great group is estimated to occupy a certain area percentage of the RMU in which it occurs. In RMUs containing three different soil great groups it was assumed that the percentage area of the RMU occupied by each great group was 40, 30, 30, respectively. This assumption was made to simplify the decision tree calculations in ALES. Similarly for those land units with only two soil great groups, great groups were assumed to occupy 60% and 40% of the total area respectively. In each case it was assumed that the dominant great group was listed first in the PNGRIS database.

Once the arabica coffee decision tree models were set up in ALES appropriate data for each land characteristic for each RMU was extracted from PNGRIS (Upper Ramu database in the case of the Upper Ramu study). A number of additional attributes required by the model (e.g. exchangeable Mg)

were added. This database was then transferred to FoxPro, whereupon ASCII files of RMU definitions and resource attributes required by the ALES system were compiled. In the ALES framework, evaluations of suitability for arabica coffee production in both low-input and high-input production systems were generated. The resultant suitability classes for each land unit were transferred to a spatial database in MapInfo from which maps of suitability for arabica coffee production were generated.

The computerized Harding *et al.* (1986) arabica coffee model was originally developed for the Upper Ramu study (Trangmar *et al.* 1995a). It was then applied in this study to PNGRIS and used to generate the ratings shown in Maps 1-5.

2.3 Papua New Guinea Land Evaluation System (PNGLES)

DAL Land Use Section currently uses the Papua New Guinea Land Evaluation System (PNGLES) either manually or through the Automated Land Evaluation System (ALES) package to assess land suitability for crop production. The main concepts of PNGLES are summarized here. Full details of PNGLES are given in Venema and Daink (1992).

2.3.1 PNGLES concepts

PNGLES is based on the FAO concepts of matching land qualities with land use requirements of a specific land utilization type (LUT) (FAO 1976) to derive suitability ratings. The matching process is conducted using a decision tree framework established for each LUT within the Automated Land Evaluation System (ALES) of Rossiter and Van Wambeke (1991). Decision trees are given for smallholder production of 18 crops (cardamom, cashew, chillies, citrus, cocoa, coconut, coffee arabica and robusta, maize, mango, oil palm, pepper, pineapple, potato, pyrethrum, rubber, upland rice, and vanilla) under low input conditions and 8 crops (cocoa, coffee arabica and robusta, maize, oil palm, pepper, pineapple, smallholder production conditions. Suitability ratings of each land quality in relation to that required for optimum production of each crop are determined using the decision trees. The suitability rating for most limiting land quality is used to determine the overall suitability of the mapping unit for the specified land utilization type. All land utilization types, crop requirements, and decision trees are given in Venema and Daink (1992).

PNGLES was initially set up to utilize the land resources data stored in PNGRIS, but can be applied at more detailed scales (Trangmar *et al.* 1995a). It currently uses eight land qualities derived from 26 land characteristics (Table 13).

2.3.2 Automated Land Evaluation System (ALES)

The ALES framework provides a systematic structure and process through which to derive the land evaluation ratings for each LUT. A particular strength of ALES is that provides a user-friendly query system through which the user can ask questions about why particular ratings were derived. ALES also has the potential capability to determine gross margins for crop production if production costs, prices, and yield data are known or can be derived for each LRU. Full details of using ALES are given in the user manual (Rossiter and Van Wambeke 1991) and are not explained here. The yield and gross margins components of ALES and PNGLES have yet to be tested in PNG.

Land qualities	Land characteristics/attributes
Temperature	Mean max. temperature Mean min. temperature
Erosion hazard	Slope Soil erodibility
Moisture conditions	Mean annual rainfall Rainfall seasonality Soil texture (topsoil, subsoil) Landform
Nutrient availability	pH Mineral reserve Anion fixation
Potential for mechanization	Stoniness/rockiness Slope Topsoil texture
Rooting conditions	Effective soil depth Soil texture (topsoil, subsoil) Stoniness/rockiness
Nutrient availability/ retention capacity	pH CEC Topsoil texture Anion fixation
Oxygen availability	Soil drainage
Soil toxicities	Acid sulphate Calcium carbonate
Excess of salts	Salinity Sodicity

Table 13: PNGLES land qualities and land characteristics

In addition to the existing decision tree models for the crops developed in PNGLES by Venema and Daink (1992) ALES provides the framework to develop such models for other crops not presently included in PNGLES.

2.3.3 Data transfer between land resource databases and ALES/PNGLES Models

The relevant land characteristics for each RMU can be readily extracted from PNGRIS database and exported to ALES to conduct the crop suitability ratings using the PNGLES models. The crop suitability ratings were computed for each RMU in PNGRIS (Venema and Daink 1992). The ratings can then be reimported back to FoxPro and MapInfo for map plotting or spatial analyses with the other land resource attributes recorded.

2.4 PLANTGRO

2.4.1 Concepts

PLANTGRO is crop physiology-based computerized system of assessing land suitability for crop growth (Hackett 1991). It operates by matching the environmental requirements for optimum growth of specific crops with the climatic and soil conditions of the site being evaluated. It uses empirical qualitative crop growth response curves for each climatic and soil factor and matches them with the climatic and soils conditions for the site being evaluated. Limitations of each climatic and soil parameter of the site is assessed for the crop on a 0-9 scale (0 representing optimum growth, 9 causing plant death). In assessing the overall rating for the site PLANTGRO uses the maximum limitation method in which crop growth is constrained to the level or rating imposed by the most limiting factor. The overall ratings are presented in terms of maximum limitation rating tables or graphs.

2.4.2 Crop growth response functions in PLANTGRO

PLANTGRO contains crop growth response functions for the following climate and soil/site parameters:

Climate:	Soils/Site:
Daylength, solar radiation	Aeration
Tolerance to brief and extended cold	Base saturation
Tolerance to heat damage	Cation exchange capacity
Thermal units	Effective rooting depth
Crop development units	pH
Water availability	N, P, K
Seasonal water logging	Salinity
Flooding	Slope
Proneness to wind damage	Soil texture

PLANTGRO currently contains these growth functions for over 100 crops. The crop growth response files have been developed using documented information and expert consultation throughout the world. Growth functions can be developed for additional crops quite easily once their response to each climate and soil factor is known. Existing functions can be easily edited to take into account cultivar or varietal differences.

2.4.3 Soil data input to PLANTGRO

ett. 19

Soils data can be entered directly to PLANTGRO or existing generalized soil files for particular types of soils (e.g. sandy, clay soils) can be used if the soil type at a particular site or area is not known. It is recommended that actual soil data be used wherever possible. Soil data required by PLANTGRO is given in Table 14. Soil chemical properties listed in Table 14 apply to the topsoil layer. All of the soils data can be derived from PNGRIS using the procedures given in Annex 1.

Soil chemical properties (Topsoil)	Soil physical/site properties
Base saturation (%)	Aeration (Drainage Class)
Cation exchange capacity (meq/100g)	Effective rooting depth (cm)
Nitrogen (%)	Slope (degrees)
Available phosphorus (ppm)	Depth (Layers A, B, C) (cm)
Exchangeable potassium (meq/100g)	Texture (Layers A, B, C) (8 classes)
Salinity (dS/m)	Available water holding capacity (Layers A, B) (cm/m)
	Drainable water holding capacity (Layers A, B, C) (cm/m)

Table 14:Soil data inputs required for PLANTGRO

2.4.4 Climatic data inputs to PLANTGRO

Climatic data used in PLANTGRO (Table 15) should be derived from weather stations with more than 15 years of established record. Climatic data can be entered and crop growth analyses conducted for monthly, 10-daily, or weekly periods. Monthly data is most commonly used and is most relevant to crop suitability assessments for land resource surveys. 10-daily or weekly data may be used where particular crop physiological responses to specific weather conditions are to be assessed. Average data over the years of record or actual data for specific monthly, 10-daily or weekly periods can be entered.

Climatic data for PNG stations can be obtained from McAlpine *et al.* (1975) and entered to PLANTGRO. In running PLANTGRO for a particular survey area, data for the nearest or most relevant climate station is selected from the climate data menu.

Data Type
Evaporation (mm)
Flooding risk value (1 or 0)
Solar radiation - average daily (Mj/m ² /day)
Temperature - mean daily min. (°C)
Wind - average (km/hr)

Table 15: Climatic data inputs required for	PLANTGRO
---	----------

2.4.5 Making crop growth predictions using PLANTGRO

Single or multiple crop suitability predictions can be computed at any one time for any combinations of crops, soils and climates. As a result, PLANTGRO is versatile in that many different crops can be compared at the same time for a particular soil and climate combination; the suitability of a particular crop can be evaluated for several different climate zones at the same time; it can also be used to assess appropriate planting times for particular crops during the year and assess crop rotation sequences for different crops under a given set of soil and climate data. PLANTGRO can also be used to assess development stages of the crop growth in response to environmental conditions. It also enables crop suitability assessments to be made for several soils and crops within a land unit.

PLANTGRO output is in the form of tables of limitation ratings for each soil and climate factor for each crop, and an overall limitation rating based on the maximum limiting rating for the individual factors. This can also be displayed graphically onscreen and results saved to a file for hard copy output. PLANTGRO also has a capability for output files to be converted to GIS format although this has not been attempted in PNG as yet.

Full details of operating PLANTGRO are given in the manual by Hackett (1991).

At the present time in PNG, PLANTGRO is best used for making crop growth predictions for particular sites or for land resource surveys with a small number of LRUs. As a result, it is quite complementary to the PNGLES suite of land evaluation models which were designed to be used with large land resource survey data sets through use of the ALES framework.

In contrast to ALES and PNGLES, PLANTGRO does not readily take management conditions into account although these can be simulated by adjusting the soil input data to match different management input levels (e.g. fertilizer, drainage, irrigation). It does not contain economic analysis modules.

PLANTGRO is not well structured to access a large land resource survey database. Its current output formats require much editing before it can be directly incorporated with a relational database for subsequent plotting with a GIS package.

2.5 Other land evaluation systems used in PNG

Land evaluation systems for a number of specific crops (including cocoa, sweet potato, coconuts) have been developed for use with land resource data in PNG. Several of these are briefly described below. Full details of each system are given in the cited references which the reader is encouraged to consult.

2.5.1 Cocoa

Bleeker and Freyne (1981) developed a land evaluation system for cocoa based on the relative severity of nine types of physical limitations. They used this system to map areas of PNG which are suitable for cocoa production. Wayi (1987) also proposed a system of land evaluation for cocoa production at three levels of management based on the FAO (1976) framework.

2.5.2 Sweet Potato

Radcliffe (1983) also applied the FAO framework for land evaluation to assess contrasting land types in Southern Highlands Province for sweet potato production under the traditional Mendi cultivation system. Radcliffe's sweet potato evaluation system could probably adapted for application in other parts of PNG.

2.5.3 Coconuts

Marques (1994) developed a land evaluation system for small-holder coconut production in PNG using the FAO framework. ALES was used as the framework within which to develop the system. The system was applied to Madang, Gulf and North Solomons Provinces as test areas using land resource data from PNGRIS. Maps of coconut suitability classes were plotted using MapInfo and areas of different suitability classes calculated (Marques 1994). The ALES model for coconut production has been installed on computers in DAL Land Use Section in Port Moresby.

2.5.4 Other Crops

Description of environmental requirements for specific crops is beyond the scope of this handbook. A bibliography of information on 26 crops is given in Venema and Daink (1992). This and the plant growth response functions given in PLANTGRO (Hackett 1991) should be consulted if new land evaluation systems for particular crops are to be developed or existing ones improved on.

3. METHODOLOGY

3.1 Classification of physical environments of PNG

The RMUs of the PNGRIS database were classified into the major environment subclasses based on the criteria defined by McAlpine (unpub.).

The classification includes 14 major environment types separated initially on the basis of major landform type (Table 16). These environment types were then subdivided according to altitude and rainfall classes. These subtypes are:

Altitude class:		Rainfall class:	
low mid high very high	(0-600m) (600-1200m) (1200-2400m) (>2400m)	dry wet very wet	(1000-2000mm) (2000-4000mm) (>4000mm)

It should be noted that not all environment types contain subtypes of each altitude and/or rainfall class. For example, mangrove swamp environments only occur in the low altitude class, but occur in all three rainfall classes. As a result, there are three environment subtypes:

Mangrove Swamps: Low altitude (0-600 m), dry (1000-2000 mm) Low altitude (0-600 m), wet (2000-4000 mm) Low altitude (0-600 m), very wet (> 4000 mm).

Each environment subtype has been further subdivided into a number of environment subclasses, based either on inundation type, slope, rock type, or dominant rock type grouping (Table 16). The environment subclasses are defined according to the PNGRIS classes for each of these land resource factors (Annex 2).

Environment type	pe Subtypes		Subclasses	Maximum number of subclasses ¹ pe subtype		
<u></u>	Altitude	Rainfall				
Mangrove Swamps	Low	Dry Wet Very wet	-	-		
Estuaries and Coastal Plains	Low	Dry Wet Very wet	Inundation type	4		
Beach Ridges and Plains	Low	Dry Wet	-	-		
Raised Coral Reefs	Low	Dry Wet Very wet	Slope	3		
Recent Alluvial Plains	ent Alluvial Plains Low Dry (L,H alt.) High Wet (L,H,VH alt.) Very high Very wet (L alt.)		High Wet (L,H,VH alt.) type			4
Relict Alluvial Plains	Low	Dry Wet Very wet	Inundation type	3		
Alluvial Floodplains	Low	Dry Wet Very wet	Inundation type	3		
Swamps	Low Mid High Very high	Dry (L alt.) Wet (L,H,VH alt.) Very wet (L,M alt.)	Inundation type	4		
Alluvial Fans	Low Mid High Very high	Dry (L,M,H alt.) Wet (L,M,H,VH alt.) Very wet (L,M,H alt.)	Rock type	3		
Volcanic Plains and Fans	Low Mid High Very high	Dry (L alt.) Wet (L,M,H,VH alt.) Very wet (L,M,H alt.)	Slope	3		
Volcanic Plateaux and Cones	Low Mid High	Wet (L,M,H,VH alt.) Very wet (L,M,H alt.)	Slope	3		
	Very high			(continued)		

Table 16: Environment types, subtypes and subclasses

Environment type		Subtypes	Subclasses	Maximum number of subclasses ¹ per subtype
	Altitude	Rainfall		
Steeplands - Karst	Low Mid High Very high	Wet (L,M,H alt.) Very wet (L,M,H,VH alt.)	Slope	3
Hills	Low Mid High Very high	Dry (L,M,H alt.) Wet (L,M,H,VH alt.) Very wet (L,M,H alt.)	Dominant rock type grouping	6 ²
Mountains	Low Mid High Very high	Dry (L,M,H,VH alt.) Wet (L,M,H,VH alt.) Very wet (L,M,H,VH alt.)	Dominant rock type grouping	5

² Includes additional subclass not previously defined, for those RMUs which did not fit any of the subclass criteria

A FoxPro database file (RMUENV.DBF) containing all the RMUs from the PNGRIS database classified to environment subclass level has been installed on computers in the Land Use Section, Department of Agriculture and Livestock (DAL).

3.2 Land evaluation procedures

3.2.1 Evaluation models

Crop suitability ratings for all PNGRIS RMUs and the environment subclasses of McAlpine (unpub.) were evaluated using the PNGLES models (Venema and Daink 1992), except for arabica coffee for which the Harding *et al.* (1986) model was used.

The decision trees of the PNGLES models were used without modification, except for the vanilla model (low input). This model produced nil ratings for three RMUs in Central Province. The decision tree for the 'rooting conditions' LUR caused the nil ratings for the particular combination of soils for these RMUs. The particular combination in question was soils with an effective soil depth of 50-100 cm, and a subsoil texture of class 6 (rock). The decision tree was altered such that this combination gave a class 2 rating for 'rooting conditions', the lowest rating elsewhere in the decision tree for all other subsoil textures and an effective soil depth of 50-100 cm.

For the Harding *et al.* (1986) coffee model only the decision tree for erosion hazard index (for low input production) was altered from that of the original model. In the decision tree of the original model an R4 rating is achieved only when a land unit has slopes >32 degrees, high rainfall erosivity and high

soil erodibility. The model was adjusted such that all units with slopes >32 degrees were given a R4 rating, including those with a higher rating for rainfall erosivity and soil erodibility.

3.2.2 Missing data from PNGRIS

Data for the rainfall erosivity (a required PNGLES land characteristic) is not part of the PNGRIS data set. Rainfall erosivity for each RMU was derived by overlaying the rainfall erosivity map given in Harding *et al.* (1986) onto an RMU map of each province. MapInfo and FOXPRO were then used to compile rainfall erosivity classes for each RMU into a database which was then linked to the PNGRIS database.

3.2.3 Suitability determinations for RMUs containing more than one soil great group

For crops evaluated using the PNGLES models, suitability ratings for RMUs containing more than one soil great group were derived using the method described in Venema and Daink (1992). For the arabica coffee evaluation, the final rating of RMUs with more than one soil great group was based on the dominant soil in the RMU.

3.2.4 Calculation of median environment subclass ratings

All RMUs were classified according to the 'Natural Resource Classification from PNGRIS' (McAlpine unpub.) down to environment subclass, altitude subclass and rainfall subclass level. The median crop suitability rating for all RMUs occurring in a particular environment subclass within a particular province was then calculated for each of a set of unique classification identifiers that occurred in each province. The median rating was then attached back to the RMUs using the unique classification identifier.

3.2.5 Data transfer and crop evaluations

The Harding *et al.* (1986) arabica coffee model required land unit definitions to be set up in the ALES database. These were created in FoxPro and exported to ALES using ASCII comma-delimited files. The attributes from PNGRIS required by the Harding arabica coffee model were also transferred from PNGRIS (FoxPro database files) to ALES using ASCII comma-delimited text files. The evaluations for all crops were then run and the results exported to an ASCII file, using the commands "File Evaluation Results", "Suitabilities" in the "Evaluations" sub-menu (Rossiter and Van Wambeke 1991).

The PNGLES models already contained a complete attribute database for all RMUs, and so did not require attributes to be transferred from PNGRIS. The crop evaluations were run for these models, and results exported as above.

The files containing the evaluation results for the Harding arabica coffee model and the PNGLES models, were imported into FoxPro and database files created. The database files for the Harding arabica coffee model and the PNGLES models were processed differently to attach individual ratings to each of the provincial RMUs. The database files for the Harding model were filtered to remove the results for RMU constituents. The ALES evaluation results file contains an evaluation rating (integer physical suitability subclass) for each RMU that corresponds to that of the first-named soil constituent (which by PNGRIS definitions occupies 40% of each RMU). It is this rating which was then attached to each provincial RMU, in individual database files for each province/crop combination.

In the case of the results files from the PNGLES models the evaluation ratings for the individual soil constituents were used in combination to derive the rating for the RMU. This was done according to the method of Venema and Daink (1992). A macro was written in FoxPro to do this. The resultant whole-RMU rating was stored as a single field in individual database files for each province/crop combination.

The individual files containing evaluation ratings for each province were then combined to create a single file containing all the RMUs for each province in PNG for each crop. These files were then transferred to MapInfo for map plotting.

3.3 Data transfer from PNGRIS to PLANTGRO

The PLANTGRO crop evaluation package (Hackett 1991) has not been evaluated for use with PNGRIS to date. The data input structures for PLANTGRO are not readily suited for application with large resource survey databases. These difficulties largely relate to extracting soils data from multi-factor resource databases and adapting them to PLANTGRO's input formats. Procedures were developed to extract soils data from PNGRIS for application with PLANTGRO. These procedures are described in full in Annex 1. The procedures were tested for 19 PNGRIS RMUs in the Upper Ramu catchment in Eastern Highlands Province. PLANTGRO analyses for these RMUs were conducted for arabica coffee, sweet orange, pineapple, Irish potato and yam. Climate data from Aiyura (McAlpine *et al.* 1975) was used for the climatic parameters required by PLANTGRO for the 19 test RMUs.

4. **RESULTS**

4.1 Physical environments of PNG

The distribution of the 14 major physical environment types in PNG are shown in Map 1. The environment types were further subdivided into a total of 235 subclasses (McAlpine unpub.) whose distribution is too complex to be shown at the map scale (1:2 000 000) used in Map 1. A data file classifying each PNGRIS RMU into one of the 235 environment subclasses has been installed on the computers in the Land Use Section, DAL.

The areas of major environment types and subtypes are summarized in Table 17. Results indicate that mountains (41%), relict alluvial plains (13%), swamps (8%) and hills (7%) are the most common environment types in PNG.

Environment	Total area (km²)	Number of RMUs
Mangrove swamps		
Low altitude (0-600m), dry (1000-2000mm)	1861	35
Low altitude (0-600m), wet (2000-4000mm)	2326	53
Low altitude (0-600m), very wet (>4000mm)	<u>1511</u> 5698	$\frac{10}{98}$
Total - Mangrove swamps	5098	20
Estuaries and Coastal Plains		
Low altitude (0-600 m), dry (1000-2000mm)	1001	16
Low altitude (0-600 m), wet (2000-4000mm)	1059	42
Low altitude (0-600 m), very wet (>4000mm)	384	9
Total - Estuaries and coastal plains	2444	67
Beach Ridges and Plains		
Low altitude (0-600m), dry (1000-2000mm)	768	17
Low altitude (0-600m), wet (2000-4000mm)	<u>1123</u>	<u>52</u> 69
Total - Beach ridges and plains	1891	69
Raised Coral Reefs		
Low altitude (0-600m), dry (1000-2000mm)	95	7
Low altitude (0-600m), wet (2000-4000mm)	5312	156
Low altitude (0-600m), very wet (>4000mm)	<u>2163</u>	<u>36</u> 199
Total - Raised coral reefs	7570	199
Recent Alluvial Plains		
Low altitude (0-600 m), dry (1000-2000mm)	3217	44
Low altitude (0-600 m), wet (2000-4000mm)	14191	150
Low altitude (0-600 m), very wet (>4000mm)	2676	45
High altitude (1200-2400 m), dry (1000-2000mm)	102 665	9 11
High altitude (1200-2400 m), wet (2000-4000mm) Very high altitude (>2400 m), wet (2000-4000mm)	131	9
Total - Recent alluvial plains	20928	268^{-9}
Total - Recent and viai plants	20720	200
Relict Alluvial Plains	~~ ~~~~	•••
Low altitude (0-600 m), dry (1000-2000mm)	22960	28
Low altitude (0-600 m), wet (2000-4000mm)	21491	20
Low altitude (0-600 m), very wet (>4000mm)	<u>15363</u> 59814	$\frac{11}{59}$
Total - Relict alluvial plains	39814	
		(continued)

Table 17: Environment types, subtypes, areas and number of RMUs

2	4
-	

Environment	Total area (km ²)	Number of RMUs
Alluvial Floodplains		
Low altitude (0-600 m), dry (1000-2000mm)	3364	27
Low altitude (0-600 m), wet (2000-4000mm)	19582	89
Low altitude (0-600 m), very wet (>4000mm)	4499	
Total - Alluvial floodplains	27445	140
Swamps		
Low altitude (0-600 m), dry (1000-2000mm)	4569	3.
Low altitude (0-600 m), wet (2000-4000mm)	25995	16
Low altitude (0-600 m), very wet (>4000mm)	4529	2
Mid altitude (600-1200 m), very wet (>4000mm)	128	
High altitude (1200-2400 m), wet (2000-4000mm)	13	
Very high altitude (>2400 m), wet (2000-4000mm)	14	
Total - Swamps	35248	22
Alluvial Fans		
Low altitude (0-600 m), dry (1000-2000mm)	4458	4
Low altitude $(0-600 \text{ m})$, wet $(2000-4000 \text{ mm})$	7964	11
Low altitude $(0-600 \text{ m})$, very wet $(>4000\text{ mm})$	907	11
Mid altitude (600-1200 m), dry (1000-2000mm)	89	1
Mid altitude (600-1200 m), wet (2000-4000mm)	539	1
Mid altitude (600-1200 m), very wet (>4000mm)	86	1
High altitude (1200-2400 m), very wet (>4000mm)	181	
High altitude (1200-2400 m), wet (2000-4000mm)	1542	3
High altitude (1200-2400 m), wet (2000-4000 mm) High altitude (1200-2400 m), very wet (>4000 mm)	114	5
Very high altitude (>2400 m), very wet (>4000mm)	76	_
Total - Alluvial fans	15956	23
Volcanic Plains and Fans		
Low altitude (0-600m), dry (1000-2000mm)	47	
Low altitude (0-600m), wet (2000-4000mm)	10197	8
Low altitude (0-600m), very wet (>4000mm)	7761	2
Mid altitude (600-1200 m), wet (2000-4000mm)	1167	1
Mid altitude (600-1200 m), very wet (>4000mm)	1710	1
High altitude (1200-2400 m), wet (2000-4000mm)	3286	3
High altitude (1200-2400 m), very wet (>4000mm)	452	
Very high altitude (>2400 m), wet (2000-4000mm)		_
Total - Volcanic plains and fans	25331	21
Volcanic Plateaux and Cones		-
Low altitude (0-600m), wet (2000-4000mm)	3618	7
Low altitude (0-600m), very wet (>4000mm)	404	1
Mid altitude (600-1200 m), wet (2000-4000mm)	2665	3
Mid altitude (600-1200 m), very wet (>4000mm)	802	1
High altitude (1200-2400 m), wet (2000-4000mm)	2084	3
High altitude (1200-2400 m), very wet (>4000mm)	836	1
Very high altitude (>2400 m), wet (2000-4000mm)	994	_1
Total - Volcanic plateaux and cones	11403	21
		(continue

(continued)

Environment	Total area (km ²)	Number of RMUs
Steeplands, Karst		
Low altitude (0-600m), wet (2000-4000mm)	169	2
Low altitude (0-600m), very wet (>4000mm)	7518	2
Mid altitude (600-1200 m), wet (2000-4000mm)	4076	2
Mid altitude (600-1200 m), very wet (>4000mm)	3897	2
High altitude (1200-2400 m), wet (2000-4000mm)	3697	2
High altitude (1200-2400 m), very wet (>4000mm)	1524	2
Very high altitude (>2400 m), wet (2000-4000mm)	1447	1
Very high altitude (>2400 m), wet (2000-4000mm)	573	_1
Total - Steeplands, karst 2731	25463	16
Hills		
Low altitude (0-600 m), dry (1000-2000mm)	5796	5
Low altitude (0-600 m), wet (2000-4000mm)	17929	19
Low altitude (0-600 m), very wet (>4000mm)	4308	
Mid altitude (600-1200 m), dry (1000-2000mm)	323	
Mid altitude (600-1200 m), wet (2000-4000mm)	499	1
Mid altitude (600-1200 m), very wet (>4000mm)	470	-
High altitude (1200-2400 m), dry (1000-2000mm)	264	
High altitude (1200-2400 m), wet (2000-4000mm)	2334	4
High altitude (1200-2400 m), very wet (>4000mm)	2633	
Very high altitude (>2400 m), wet ($2000-4000$ mm)	425	
Total - Hills	32383	20
Mountains		
Low altitude (0-600 m), dry (1000-2000mm)	4787	
Low altitude (0-600 m), wet (2000-4000mm)	43911	30
Low altitude (0-600 m), very wet (>4000mm)	19886	15
Mid altitude (600-1200 m), dry (1000-2000mm)	567	
Mid altitude (600-1200 m), wet (2000-4000mm)	36433	30
Mid altitude (600-1200 m), very wet (>4000mm)	11657	12
High altitude (1200-2400 m), dry (1000-2000mm)	2180	
High altitude (1200-2400 m), wet (2000-4000mm)	47972	4
High altitude (1200-2400 m), very wet (>4000mm)	6725	12
Very high altitude (>2400 m), dry (1000-2000mm)	99	
Very high altitude (>2400 m), wet (2000-4000mm)	12311	1
Very high altitude (>2400 m), very wet (>4000mm)	479	
Total - Mountains	187007	182

4.2 Land suitability for arabica coffee by environment subclass and RMU

4.2.1 Suitability for arabica coffee based on environment subclass

The suitability of arabica coffee production (Harding *et al.* 1986) based on analysis of median ratings for each environment subclass are shown in Maps 2 (low input) and 3 (high input). Map 2 indicates that small areas of highly suitable land occur near Goroka in Eastern Highlands Province, Mt Hagen in Western Highlands Province and in Southern Highlands Province. Large areas with moderate suitability occur along the main axial ranges of the PNG mainland with small areas at higher elevations in East New Britain, New Ireland and the islands in Milne Bay Province.

Map 3 also indicates that the same areas which are highly suited for low input coffee production are also well suited for high input production. However, a much smaller area is moderately suited and is restricted to parts of the Southern Highlands, Enga, Western Highlands, Eastern Highlands and Morobe Provinces with small areas in Central and Northern Provinces. The total areas of suitability class based on analysis of environment subclasses are given in Table 18.

Input level		Total			
	High	Moderate	Marginal	Not suitable	
Low (km ²)	2909	61370	22068	372288	458635
Low (%)	0.6	13.4	4.8	81.2	100
High (km ²)	3131	10316	732	444456	458635
High (%)	0.7	2.2	0.2	96.9	100

 Table 18:
 Areas of suitability classes for arabica coffee production based on environment subclasses

4.2.2 Suitability for arabica coffee based on RMUs

The suitability of arabica coffee production based on application of the Harding *et al.* (1986) model for each of the PNGRIS RMUs is shown in Maps 4 (low input) and 5 (high input). The suitability ratings determined on analysis of each RMU are summarized in Tables 19 (low input) and 20 (high input) for each province. About 4% of PNG has high physical suitability under either low or high input management (Tables 19, 20). These areas occur mainly in the 1300-1700 altitude range in rolling terrain in West Sepik, Southern Highlands, Enga, Western Highlands, parts of Chimbu, Eastern Highlands, Morobe, Central and Milne Bay Provinces with small areas in Madang and Northern Provinces (Maps 4 and 5).

About 8% of PNG is moderately suited for low input arabica coffee production compared to about 1% under high input levels. Areas of moderate suitability for low input production are generally adjacent to the highly suitable areas listed above (Map 4). These are generally areas which are less suitable because of soil constraints (effective rooting depth, soil fertility), steeper slopes, suboptimal altitude/temperature range, or soil erodibility. Areas which are marginal for low input production occur on higher parts of New Britain, New Ireland and Bougainville with constraints largely caused by warmer temperatures and moist climate.

Results indicate a wider distribution of areas of high suitability based on RMU analysis compared to the values determined using the median rating for each environment subclass (Maps 2 and 3). In the environment subclass approach, values of land attributes are averaged across RMUs within each contiguous environment subclass. This may result in the relatively lower suitability ratings of many areas using the environment subclass median values compared to analysis based on each RMU.

Soil factors were not used as criteria for separating environment subclasses. They were not used because of the complexity of the soil pattern and difficulties of delineating homogeneous units at 1:500 000 scale in PNGRIS.

Province			Su	itability c	lass and a	ea			Total area
	Hig	High		Moderate		Marginal		Unsuitable	
	(km ²)	(%)	(km ²)	(%)	(km ²)	(%)	(km ²)	(%)	(km ²)
Western	16	<0.1	10	<0.1	0	0	96260	99.9	96286
Gulf	0	0	60	0.2	0	0	33787	99.8	33847
Central	2233	7.5	4899	16.4	39	0.1	22747	76.0	29918
Milne Bay	587	4.2	1513	10.7	4	< 0.1	12021	85.1	14125
Northern	694	3.1	3071	13.6	0	0	18745	83.3	22510
Southern Highlands	2444	9.5	3796	14.8	0	0	19400	75.7	25640
Enga	1392	11.8	2119	17.9	81	0.7	82470	69.6	11839
Western Highlands	2080	23.4	3183	35.7	0	0	3634	40.9	8897
Chimbu	373	6.2	996	16.5	0	0	4653	77.3	6022
Eastern Highlands	3607	32.8	3340	30.4	292	2.6	3767	34.2	11006
Morobe	3693	11.0	6413	19.1	331	1.0	23074	68.9	33511
Madang	371	1.3	851	3.0	84	0.3	27355	95.4	28661
East Sepik	19	< 0.1	378	0.9	99	0.2	43020	98.9	43516
West Sepik	1527	4.2	3419	9.5	11	<0.1	31053	86.2	36010
Manus	0	0	0	0	0	0	2098	100	2098
New Ireland	0	0	458	4.8	1922	20.0	7235	75.2	9615
East New Britain	0	0	427	2.8	2357	15.6	12325	81.6	15109
West New Britain	0	0	29	0.1	1800	8.7	18867	91.2	20696
North Solomons	0	0	100	1.1	1045	11.2	8184	87.7	9329
TOTAL	19036	4.2	35062	7.6	8065	1.8	396472	86.4	458635

 Table 19:
 Areas of suitability classes for low input arabica coffee production based on PNGRIS RMUs

Province			Su	itability c	class and ar	rea			Total area
	Hig	High		erate	Marg	ginal	Unsuita	Unsuitable	
	(km ²)	(%)	(km ²)	(%)	(km ²)	(%)	(km ²)	(%)	(km ²)
Western	16	<0.1	10	<0.1	0	0	96260	99.9	96286
Gulf	0	0	0	0	0	0	33847	100	33847
Central	2179	7.3	162	0.5	39	0.1	27538	92.1	29918
Milne Bay	587	4.2	25	0.2	4	<0.1	13509	96.8	14125
Northern	694	3.1	14	0.1	0	0	21802	96.8	22510
Southern Highlands	2549	9.9	867	3.4	0	0	22224	86.7	25640
Enga	1392	11.8	337	2.8	0	0	10110	85.4	11839
Western Highlands	2226	25.0	777	8.7	0	0	5894	66.3	8897
Chimbu	491	8.2	113	1.9	0	0	5418	89.9	6022
Eastern Highlands	3607	32.8	650	5.9	93	0.8	6656	60.5	11006
Morobe	3719	11.1	135	0.4	0	0	29657	88.5	33511
Madang	251	0.9	203	0.7	0	0	28207	98.4	28661
East Sepik	19	<0.1	0	0	0	0	43497	99.9	43516
West Sepik	1544	4.3	220	0.6	11	<0.1	34235	95.1	36010
Manus	0	0	0	0	0	0	2098	100	2098
New Ireland	0	0	0	0	483	5.0	9132	95.0	9615
East New Britain	0	0	433	2.9	42	0.3	14634	96.8	15109
West New Britain	0	0	39	0.2	0	0	20657	99.8	20696
North Solomons	0	0	100	1.1	0	0	9229	98.9	9329
TOTAL	19274	4.2	4085	0.9	672	0.2	434604	94.7	458635

 Table 20:
 Areas of suitability classes for high input arabica coffee production based on PNGRIS RMUs
4.2.3 Comparison of PNGLES and Harding et al. (1986) arabica coffee models

Suitability ratings determined by the PNGLES (Venema and Daink 1992) and Harding *et al.* (1986) low input arabica coffee land evaluation models were compared at two different spatial scales:

- 1: 500 000 scale based on the PNGRIS RMUs, and
- 1: 50 000 scale for 598 Land Resource Units (LRUs) mapped in the Upper Ramu catchment (Trangmar *et al.* 1995a) in Eastern Highlands Province.

Results for the comparison between models (Table 21) show that the Harding *et al.* (1986) model rates about 11% of PNG as being of high or moderate suitability for low input arabica coffee production. In contrast, the PNGLES model rates only about 4% as being moderately suitable, with none being highly suited.

Rating class	PNGLES		Harding et al. (1986)	
	Area (km ²)	%	Area (km ²)	%
1	0	0	19036	4.2
2	17325	3.8	35062	7.6
3	281339	61.3	8065	1.8
4	150642	32.8	396472	86.4
	458635	100	458635	100

Table 21:Comparison of suitability ratings for PNGRIS RMUs using the PNGLES and Harding
et al. (1986) low input arabica coffee models

In the comparison made at 1:50 000 scale, the Harding *et al.* (1986) model for high input arabica coffee production produced a more severe rating than the PNGLES model for 31% of LRUs (Table 22). In 18% of LRUs the Harding *et al.* (1986) model produced a less severe rating than the PNGLES model. The remaining 50% of LRUs had the same rating in each system. For low input production, the Harding *et al.* (1986) model produced a more severe rating than the PNGLES model (Table 23) for 48% of the LRUs. In 21% of LRUs the Harding *et al.* (1986) model produced a more severe rating the PNGLES. The remaining 31% of LRUs had the same rating in each system.

Many of the discrepancies between the two systems are caused by differences in the decision trees and class boundaries for altitude (temperature) and rainfall land use requirements. The Harding *et al.* (1986) model treats variation in altitude outside the optimal range of 1300-1699 m more severely than the PNGLES model. Similarly, the Harding *et al.* (1986) model downgrades variation in rainfall outside the 2000-2999 mm optimal range more severely than the PNGLES models.

For example, in the Harding *et al.* (1986) model, a rainfall of less than 1500 mm yields a severity level for the rainfall land use requirement of "4". The suitability class is therefore Class 4, indicating that this LRU is unsuitable for both high and low input arabica coffee production. However in the PNGLES model, the land use requirement decision tree yields a severity level of "2", because it also considers the texture of the subsoil in this decision tree.

Therefore rainfall is rated more severely in the Harding model. In the case of the Upper Ramu, this has a significant effect on the ratings produced with 276 LRUs in the low input model, and 186 LRUs in the high input model being affected by the more severe rainfall rating.

In cases where the PNGLES models produced more severe ratings, this was largely due to differences in assessment of soil aeration or wetness. In PNGLES aeration status is solely derived from soil drainage class. For poorly or very poorly drained soils, the land use requirement rating is '4' (i.e. unsuitable for coffee production). However, for the corresponding land use requirement (drainage/effective soil depth) in Harding *et al.* (1986) such soils are rated as 3. Where drainage is mitigated by other land use requirements the final rating for such soils in Harding *et al.* (1986) may be 2.

4.2.4 Interpretation of land evaluation results

The differences in evaluation results of the two models for both the PNGRIS RMUs and the Upper Ramu study indicate the need for users of the land evaluation systems to be fully aware of which models and criteria were used. They should also be aware of the limitations of the models used.

The results also indicate that the PNGLES and Harding *et al.* (1986) models require further validation before they are widely applied in PNG.

Rating class, Harding model	Rating class, PNGLES model	No. of LRUs	Example Harding model subclass ¹	Example PNGLES model subclass ²
Harding model m	ore severe:			
4	3	46	4r/e	3e
4	2	137	4r	2m/t
3	2	3	3a/r	2c/m/w
3	1	-	-	-
2	I	-	-	-
Total LRUs		186 (31.1%)		
Venema model m	ore severe:			
3	4	7	3d/a/r	4w
2	4	42	2d/r	4w
2	3	-	-	-
1	3	-	-	-
1	2	63	1	2m/t
Total LRUs		112 (18.7%)		
No difference:				
4	4	260	4r/e	4e
3	3	-	-	-
2	2	40	2r	2m/w
1	1	-	-	-
Total LRUs		300 (50.2%)		

 Table 22:
 Comparison of suitability classes for high input arabica coffee production using models of PNGLES and Harding et al. (1986)

¹ Subclass abbreviations for the Harding models as follows:

a altitude	d drainage/effective soil depth
e erosion hazard	r rainfall

² Subclass abbreviations for the Venema models as follows:

c temperature

32

m moisture conditions

t nutrient availability/retention capacity

w oxygen availability (wetness)

Rating class, Harding model	Rating class, PNGLES model	No. of LRUs	Example Harding model subclass ¹	Example PNGLES model subclass ²
Harding model m	ore severe:	·		
4	3	226	4r/e	3e
4	2	50	4r	2m/n
3	2	8	3a/r	2c/e/m/w
3	1	-	-	-
2	1	-	-	-
Total LRUs		284 (47.5%)		
Venema model m	iore severe:			
3	4	28	3d/r	$4\mathbf{w}$
2	4	-	-	-
2	3	-	-	-
1	3	-	-	-
1	2	99	1	2e/m
Total LRUs		127 (21.2%)		
No difference:				
4	4	101	4r/e	4e
3	3	-	-	-
2	2	86	2r	2e/m/r/w
1	1	-	-	-
Total LRUs		187 (31.3%)		

Table 23: Comparison of suitability classes for low input arabica coffee production using models of PNGLES and Harding et al. (1986)

¹ Subclass abbreviations for the Harding models as follows:

a altitude

e erosion hazard

d drainage/effective soil depth r rainfall

² Subclass abbreviations for the Venema models as follows:

c temperature

m moisture conditions

t nutrient availability/retention capacity

w oxygen availability (wetness)

4.3 Land suitability for oil palm

The suitability of land for high input oil palm production based on application of the PNGLES model (Venema and Daink 1992) for each of the PNGRIS RMUs is shown in Map 6. The suitability ratings determined on analysis of each RMU are summarized in Table 27 for each province. Results indicate that about 4% of PNG has high physical suitability for oil palm. These areas occur mainly in Madang, Morobe, Northern, Central, Milne Bay, West New Britain, New Ireland and North Solomons Provinces. About 6% of PNG is moderately suited, 24% is marginal and 66% is unsuitable (Table 24, Map 6).

Areas of moderate suitability occur in East and West Sepik, the Gogol Valley in Madang, parts of Western Province, Gulf, Central, Northern, New Britain, and small areas in Morobe, Milne Bay, North Solomons, and New Ireland.

4.4 Land suitability for other crops

Land suitability assessments were conducted using the PNGLES models for low input, small-holder production of 14 other crops (cardamom, cashew, chillies, citrus, cocoa, coconut, coffee robusta, maize, mango, oil palm, pepper, pineapple, potato, pyrethrum, rubber, upland rice, and vanilla) under low input conditions and 6 other crops (cocoa, coffee robusta, maize, potato, upland rice, rubber) under medium to high input, smallholder production conditions.

For each of the above crops, land suitability ratings for each PNGRIS RMU were transferred from ALES and linked to the PNGRIS database for mapping using MapInfo. These crop suitability map files have been installed on the computers in the DAL Land Use Section, Port Moresby from which hard copy maps can be readily produced. The maps are too numerous to be presented in this report. The example of oil palm is given in Map 6.

In addition, suitability ratings were computed for each median environment subclass for all 18 of the PNGLES crops (Venema and Daink 1992). Results for each province have been installed on the DAL Land Use Section computers. Area summaries (km² and per cent of total province area) of suitability ratings by crop and province are given in Annex 3 for the PNGLES models calculated on an RMU basis and by median environment subclass.

Province			Sui	tability c	lass and are	a			Total
		;h	Mode	rate	Margi	nal	Unsuita	able	area
	(km ²)	(%)	(km ²)	(%)	(km ²)	(%)	(km ²)	• (%)	(km ²)
Western	0	0	5384	5.6	51457	53.4	39445	41.0	96286
Gulf	698	2.1	3333	9.9	1115	3.3	28701	84.7	33847
Central	1127	3.8	1816	6.1	5297	17.7	21678	72.4	29918
Milne Bay	1975	14.0	1207	8.6	1727	12.2	9216	65.2	14125
Northern	2925	13.0	1927	8.6	3827	17.0	13831	61.4	22510
Southern Highlands	0	0	529	2.1	145	0.6	24966	97.3	25640
Enga	68	0.6	54	0.5	0	0	11717	98.9	11839
Western Highlands	257	2.9	172	1.9	726	8.2	7742	87.0	8897
Chimbu	0	0	40	0.7	1081	18.0	4901	81.3	6022
Eastern Highlands	0	0	116	1.0	98	0.9	10792	98.1	11006
Morobe	1107	3.3	1021	3.1	4541	13.6	26842	80.0	33511
Madang	4069	14.2	2132	7.4	3607	12.6	18853	65.8	28661
East Sepik	0	0	981	2.2	10524	24.2	32011	73.6	43516
West Sepik	0	0	2676	7.4	13254	36.8	20080	55.8	36010
Manus	193	9.2	662	31.6	260	12.4	983	46.8	2098
New Ireland	1448	15.1	1319	13.7	2384	24.8	4464	46.4	9615
East New Britain	816	5.4	1737	11.5	0	0	12556	83.1	15109
West New Britain	2551	12.3	3782	18.3	3871	18.7	10492	50.7	20696
North Solomons	2185	23.4	685	7.3	4305	46.2	2154	23.1	9329
TOTAL	19419	4.2	29573	6.5	108219	23.6	301424	65.7	45863

 Table 24:
 Areas of suitability classes for oil palm production based on PNGRIS RMUs

4.5 PLANTGRO ratings for Upper Ramu test area

Crop suitability ratings and dominant constraints for selected PNGRIS RMUs from the Upper Ramu test application of PLANTGRO are summarized in Table 25. PLANTGRO uses growth limitation ratings (GLRs) imposed by soil or climatic constraints to assess potential crop performance. GLRs are rated (Hackett 1991) as:

- 0-2 High potential crop performance (Minimal physical limitations to crop growth)
- 3-4 Moderate potential crop performance (Moderate limitations to crop growth)
- 5-6 Low potential crop performance (Significant limitations to crop growth)
- 7-8 Nil potential (Severe limitations to crop growth)
- 9 Rapid death (Very severe limitations to crop growth).

The PLANTGRO ratings correspond to the high, moderate, marginal and unsuitable classes used in this report for ratings derived from PNGLES and Harding *et al.* (1986)

Table 25:PLANTGRO ratings and main limitations for selected crops and PNGRIS RMUs,
Upper Ramu catchment, Eastern Highlands Province. Comparative ratings for
Harding *et al.* (1986) for arabica coffee and PNGLES for other crops (except yam) in
parentheses.

RMU No.	PLANTO	GRO crop perform	ance ratings an	d main limitatio	ns
	Arabica coffee	Sweet orange	Pineapple	Irish potato	Yam
171	9 (4)	6 (3)	5 (3)	5 (3)	6
	Slope	Soil texture	Fertility	Slope	Temp.
441	3 (2)	3 (2)	4 (2) Solar	3 (2)	6
	Fertility	Temperature	radiation	Fertility	Temp.
442	4 (2) Aeration	6 (3) Aeration, texture	5 (3) Fertility	5 (3) Fertility	6 (3) Temp.
452	6 (3)	7 (4)	7 (4)	7 (4)	6 (3)
	Aeration	Aeration	Aeration	Aeration	Temp.
60	4 (2)	4 (2)	5 (3)	5 (3)	6 (3)
	Slope	Temperature	Fertility	Fertility	Temp.
64	2 (1) Nil	4 (2) Temperature	4 (2) Solar radiation	2 (1) Nil	6 (3) Temp.

For the RMUs listed in Table 25 ratings based on PLANTGRO correlated closely with those for the other evaluation systems used. As with the ALES-based systems (PNGLES and Harding *et al.* (1986), the limitation ratings of each land characteristic are given in the PLANTGRO output. An additional advantage of the PLANTGRO output is that climatic limitations at various parts of the growing season

can be identified for each crop. This capability is not present in PNGLES or the Harding *et al.* (1986) coffee models.

The land use requirements in PLANTGRO are more physiologically-based than PNGLES or the Harding *et al.* (1986) coffee model. As a result, PLANTGRO is more sensitive to climatic parameters than the other two models. For example, Table 25 indicates that while there are basically no soil constraints to growth of pineapple in RMUs 441 and 64, solar radiation is the major limiting factor to achieving optimum growth. Factors such as solar radiation are not included in the other models.

The structure of PLANTGRO enables rapid comparison of site suitability for a range of crops, comparison of sites (different soils, and/or climates) for a specific crop(s), crop rotations, and assessment of the phasic development of some crops. It is also flexible in climate data entry which can include weekly or mean monthly records, or actual monthly records for a specific year. As a result, it complements the relatively inflexible decision tree structure of the ALES-based models. However, PLANTGRO's current input/output formats are not easily linked with relational databases or computer mapping packages. This constraint limits its widespread application with large resource databases.

5. DISCUSSION

5.1 Model validation requirements

The analysis has indicated a need for wider validation of the PNGLES models (Venema and Daink 1992) and the Harding *et al.* (1986) arabica coffee models. The PNGLES models have been applied for several small areas by DAL Land Use Section staff (F. Daink *pers comm.*). They were also used to assess land suitability for citrus and Irish potato at 1:50 000 scale in the Upper Ramu catchment (Trangmar *et al.* 1995a). In the latter study, the suitability ratings produced by the models for specific areas were compared with local experience of crop production as a reliability check. However, no systematic quantitative testing of models in relation to yield and specific management inputs in different locations has been conducted to date.

The arabica coffee models of Harding *et al.* (1986) have been applied and tested in the Western Highlands (Harding *et al.* 1987). They were also applied at 1:50 000 scale in the Upper Ramu catchment (Trangmar *et al.* 1995a). Results were generally consistent with local experience.

Both the PNGLES and Harding *et al.* (1986) arabica coffee models require further field testing in areas with different land characteristics and management regimes. Validation should include comparison of model ratings with crop yield results under known management inputs. This should be done in a range of environments that cover a range of rating classes so that the boundaries between rating classes can be more reliably defined.

As the systems become used and tested in different areas, they should be refined and updated by DAL Land Use Section staff. This should be an ongoing activity as DAL experience in application of the various systems increases.

In addition, comparisons of different land evaluation systems which exist in PNG for some crops (e.g. cocoa) should be systematically compared so DAL staff can select the most appropriate model for each crop. For example, the results produced by the cocoa model of Bleeker and Freyne (1981) should be compared with those of PNGLES (Venema and Daink 1992) and PLANTGRO (Hackett 1991) to assess which best match local experience.

5.2 Scale factors in land use suitability assessment

The land evaluation systems discussed in this report can be readily applied at different map scales. However, it is essential that interpretation of the results is done in context of the map scale at which the land characteristics used in the land evaluation systems are collated and delineated.

Land suitability assessments made using data from PNGRIS are only relevant for planning at national or provincial level. The land resource data in PNGRIS was compiled at 1:500 000 scale and is of insufficient detail for planning agricultural development at district, subdistrict or catchment levels. Land evaluation for planning at these levels should be based on resource data mapped at scales of 1:50 000 or 1:25 000, respectively (Basher *et al.* 1995). Land suitability assessment for village development or site-specific agricultural projects requires land resource data mapped at scales of 1:10 000 or larger.

5.3 Adjustment of rating criteria in relation to management conditions

Adaptations to the models may be required at different spatial scales and under different input management systems. At increasing levels of spatial detail, the assumed management inputs levels (or Land Utilization Type in the PNGLES models) will require increasing refinement for local crop production systems and management inputs. In applying the land evaluation systems, care should be taken in defining the management systems to which the systems are applied to ensure relevance of the suitability ratings generated.

5.4 Application of land evaluation models

The ALES-based models (PNGLES, Harding *et al.* (1986)) should be used in conjunction with appropriate land resource data to initially screen land suitability at national and provincial level using PNGRIS. They should then be used in conjunction with more detailed land resource data (e.g. 1:50 000) collected in areas of high potential to identify specific areas of development potential. Once such areas have been identified detailed site investigations of land suitability should be done in conjunction with other relevant factors such as availability of markets, investment, infrastructure, and transport. PLANTGRO is perhaps best used to complement the ALES-based models at this detailed, site-specific stage of the agricultural development process to assess specific soils, crop species and combinations under a particular set of well documented climatic conditions.

5.5 Future model development

Once the existing models have been more widely validated and applied, additional parameters of importance for production of specific crops could be added to improve their predictive ability. For example, climatic criteria (e.g. rainfall, rainfall seasonality, humidity, temperature) could be used to predict general likelihood of pest and disease occurrence for specific crops.

Addition of new parameters and their testing should be done in conjunction with agronomists and crop specialists with experience of specific crops in different parts of PNG.

6. CONCLUSIONS

The framework for computerized land evaluation systems in PNG have been established by the development of PNGLES (Venema and Daink 1986), the arabica coffee model of Harding *et al.* (1986), and the test application of PLANTGRO (Hackett 1991) in conjunction with PNGRIS. However, the systems applied during this study require ongoing validation in different parts of PNG. This should be done by comparison of crop yield data with suitability ratings generated by the land evaluation systems. This should be done in collaboration with local agronomists and crop production specialists.

Results of the analyses for arabica coffee production indicate that use of median ratings for environment subclasses downgrade suitability ratings compared to analysis on an RMU-by-RMU basis. This is caused by use of the median rating for each environment subclass whose value reflects the generally more common lower suitability classes in an environment unit and downgrades the RMUs which (on an individual basis) have higher suitability ratings.

The aggregation of ratings using the environment class approach are useful for very broad scale analysis of crop suitability. However, calculation of ratings on an RMU basis provide a more reliable estimate of crop suitability because the ratings are directly related to the land resource data in each RMU rather than averaged for all RMUs in a particular environment subclass.

Wider correlation of the PNGLES and Harding *et al.* (1986) arabica coffee models should be conducted. Appropriate adjustments should be made to each model to ensure improved consistency between the ratings produced by each model.

The development of PNGLES and the Harding *et al.* (1986) coffee model in the ALES framework makes them well suited to land evaluation in association with computerized land resource databases such as PNGRIS and the Upper Ramu database (Trangmar *et al.* 1995b). The work done in this study of developing procedures to extract soil data from PNGRIS for use in PLANTGRO should be expanded on to make PLANTGRO more widely applicable with PNGRIS. This will require revision of data input/output formats in PLANTGRO to make it more compatible with relational databases and applicable with land resource survey data.

The crop suitability ratings based on PNGRIS in this study should only be used for agricultural development planning at national scale. Investigations for agricultural development at provincial, district, subdistrict and site-specific levels should be conducted at more detailed scales.

REFERENCES

- Bellamy, J.A. (compiler). 1986. Papua New Guinea inventory of natural resources, population distribution and land use handbook. CSIRO Division of Water and Land Resources, Natural Resources Series No. 6 (CSIRO: Melbourne).
- Bleeker, P. 1975. Explanatory notes to the land limitation and agricultural land use potential map of Papua New Guinea. CSIRO Australian Land Research Series 36.
- Bleeker, P. 1983. Soils of Papua New Guinea. CSIRO and ANU Press, Canberra.
- Bleeker, P., and Freyne, D.F. 1981. Areas suitable for cocoa production in Papua New Guinea. CSIRO, Australia and Dept. Primary Industry, Papua New Guinea.
- FAO (Food and Agriculture Organization). 1976. A framework for land evaluation. Soils Bulletin 32, Rome.
- Haantjens, H.A. 1963. Land capability classification in reconnaissance surveys in Papua New Guinea. J. Aust. Inst. of Agric. Sci. 29:104-107.
- Haantjens, H.A. 1969. Agricultural land classification for New Guinea land resources surveys. Second revised edition. CSIRO Division of Land Research Tech. Mem. 86/4. Canberra.
- Haantjens, H.A., Reynders, J.J., Mouthaan, W.L.P.J., and van Baren, F.A. 1967. Major soil groups of New Guinea and their distribution. Communication No. 55, Department of Agriculture Research, Royal Tropical Institute, Amsterdam.
- Hackett, C. 1988. Matching plants and land: Development of a general broadscale system from a crop project for Papua New Guinea. CSIRO Division of Water and Land Resources, Natural Resources Series No. 11, Melbourne.
- Hackett, C. 1991. PLANTGRO A software package for the coarse prediction of plant growth. CSIRO Publications, Melbourne. 242 p.
- Harding, P.E., Bleeker, P. and Freyne, D.F. 1986. A handbook for land suitability evaluation for rainfed arabica coffee production in Papua New Guinea. Coffee Research Report 3. PNG Coffee Research Institute. 134 p.
- Harding, P.E., Bleeker, P. and Freyne, D.F. 1987. Land suitability evaluation for rainfed arabica coffee production: Western Highlands Province, Papua New Guinea. Coffee Research Report 4. PNG Coffee Research Institute.
- Hartley, A.C., Aland, F.P., and Searle, P.G.E. 1967. Soil survey of West New Guinea, the Balima-Tiauru area. Soil Survey Report No 1, DASF, Port Moresby.
- McAlpine, J.R., Keig, G., and Short, K. 1975. Climatic tables for Papua New Guinea. CSIRO Division of Land Use Research Technical Paper 37. Canberra, Australia.

- McAlpine, J.R. Unpub. Environments of Papua New Guinea and their current use. Unpublished report.
- Marques, M.R. 1994. Land suitability classification for small-holder coconut production in Papua New Guinea. M.Sc Thesis, University of Queensland. 191 p.
- Radcliffe, D.J. 1983. Land evaluation for food crop production in Papua New Guinea. Paper presented at the 1st PNG Food and Nutrition Conference, Goroka, AFTSEMU Technical Report No. 2. Mendi.
- Rossiter, D.G., and Van Wambeke, A.R. 1991. ALES Version 3 User's Manual. Cornell University, Ithaca, New York.
- Trangmar, B.B., Basher, L.R., Rijkse, W.C., and Jackson, R.J. 1995a. Land resource survey, Upper Ramu Catchment, Papua New Guinea. (AIDAB:CSIRO), PNGRIS Publication 3.
- Trangmar, B.B., Basher, L.R., and Rijkse, W.C. 1995b. Land resource survey, Upper Ramu Catchment, Papua New Guinea: Database attributes. (AIDAB:CSIRO), PNGRIS Report 3.
- Venema, J.H., and Daink, F. 1992. Papua New Guinea Land Evaluation System (PNGLES). AG:TCP/PNG/0152 Field Document 1. PNG Dept. Agriculture and Livestock, and Food and Agriculture Organization. 152 p.
- Wayi, B.M. 1987. Development of a land suitability classification system for cocoa in Papua New Guinea. M.S. Thesis. State University of Ghent, Belgium.

ANNEX 1: Procedures for extracting soils data from PNGRIS for entry to PLANTGRO

1. Introduction

PLANTGRO (Hackett 1991) is a computer program which generates semi-quantitative predictions of plant performance based on soil, climate and plant characteristic files. Linking PLANTGRO to PNGRIS data should allow prediction of physical crop suitabilities for many crops across many RMUs. However, constraints to doing this are:

- limitations in PLANTGRO input and output formats
- PNGRIS does not contain all the data required to run PLANTGRO
- inconsistencies in data definitions between PNGRIS and PLANTGRO

Any omissions from the PNGRIS database or the accuracy of the PLANTGRO models are not considered here. Such factors impact on the reliability of predictions obtained by linking PLANTGRO and PNGRIS, but not on the procedures of generating such predictions.

2. PLANTGRO input and output

PLANTGRO reads input data from ASCII text files in a strict format and writes data as text reports to a printer or text file. There is no facility for reading data from or writing predictions to databases in standard formats. A computer program (SOILOUT.EXE) was written to take data from a standard database (Paradox) table and write this out to a series of PLANTGRO soil files (one soil per record). The following fields are read from the Paradox table:

Name	Name of PLANTGRO soil file
Fullname	Soil (site) name stored in PLANTGRO file
Aeration	PLANTGRO aeration code
BS	Base saturation (%)
CEC	CEC (meq/100g)
PRD	Potential rooting depth (cm)
Р	Olsen Phosphate (ppm)
К	Exchangeable K (meq/100g)
Sal	Salinity (dS/m)
Slope	Slope (degrees)
DEPTHA	Thickness of "A" horizon (cm)
DEPTHB	Thickness of "B" horizon (DEPTHA+DEPTHB=Potential rooting depth)
DEPTHC	Thickness of "infiltration zone" (cm)
AWCA	Available water in A horizon (%)
AWCB	Available water in B horizon (%)
DRWA	Drainable water capacity in A horizon (%)
DRWB	Drainable water capacity in B horizon (%)
DRWC	Drainable water capacity in C horizon (%)
TEXTA	Texture of A horizon (PLANTGRO code)
TEXTB	Texture of B horizon (PLANTGRO code)
TEXTC	Texture of infiltration zone (PLANTGRO code)

Writing a computer program to convert PLANTGRO output to a standard database table for use with PNGRIS requires the computer program to interpret the PLANTGRO text output in a format suitable for input to a relational database and use with computer mapping software.

3. PNGRIS data

PNGRIS stores soil data for the three main soils within each RMU. Most of the soil data required by PLANTGRO is included in PNGRIS (subject to translation) or could be reasonably inferred from PNGRIS data. The main exceptions are:

- Slope PNGRIS records two slopes and three soils per RMU but does not indicate which slopes apply to which soils. This must be inferred from user knowledge of soils and their likely slope class.
- Layers PNGRIS stores an overall depth rating rather than the thicknesses of individual layers as required by PLANTGRO. This overall thickness must be arbitrarily split between the soil A and B horizons for input to PLANTGRO.
- AWC Available water capacity (AWC) is required for the A and B layers in PLANTGRO. PNGRIS stores a rating for the cumulative AWC for three different rooting depths. The ratings are too coarsely stepped to allow estimation of the individual layer AWCs by difference. As a result, AWC must be estimated from texture.
- DRWC Drainable water capacity was not included in the PNGRIS data. This was estimated from the texture.

Infiltration Zone

PNGRIS does not include any data about the 'infiltration zone' parameter used in PLANTGRO. The infiltration zone is an area below the rooting zone which may impede soil drainage and lead to seasonal water-logging if its drainable water capacity or total thickness is sufficiently low. A constant infiltration zone of 1 m can generally be assumed with texture, AWC and DRWC the same as the B horizon.

4. Data inconsistencies between systems

The PNGRIS and PLANTGRO data formats differ in several ways. PLANTGRO uses numeric estimates for most properties while PNGRIS stores ratings. The PLANTGRO models are not particularly sensitive to the precise value of each input parameter. The level of precision in the PNGRIS data is probably adequate for most PLANTGRO applications.

A series of lookup tables were created converting the PNGRIS data code to one or more PLANTGRO soil parameters. Each lookup table was given fields named CODE giving the PNGRIS code, DESC giving the corresponding description, and one or more other fields giving the corresponding PLANTGRO soil characteristic(s).

The lookup tables are:

Lookup table	PNGRIS field (CODE)	Corresponding PLANTGRO field(s)
AVAILP	AVAILP	PGOLSEN Olsen Phosphate
BS	BS	PGBS Base Saturation
CEC	CEC	PGCEC Cation Exchange Capacity
DEPTH	DEPTH	PGDEPTH Potential rooting depth PGDEPTHA A horizon thickness PGDEPTHB B horizon thickness
DRAINAGE	DRAINAGE	PGAERAT PLANTGRO Aeration code
EXK	ЕХСНК	PGKX Exchangeable K
NITROGEN	NITROGEN	PGNIT Available Nitrogen
PH	РН	PGPH Soil pH
SALINITY	SALINITY	PGSAL Soil salinity
SLOPE	SLOPE1 or SLOPE2	PGSLOPE Slope
TEXTURE	TEXTURE1 or TEXTURE2	PGTEXT Texture (PLANTGRO code) PGAWC Available water capacity PGDRWC Drainable water capacity

 Table 1-1:
 Summary of lookup tables for converting PNGRIS soil data to PLANTGRO soil input parameters

5. Procedure for generating PLANTGRO Predictions

The following procedure was used to generate PLANTGRO predictions for arabica coffee, sweet orange, pineapple, Irish potato and lesser yam for each of the 57 soils within the 19 RMUs in the Upper Ramu catchment. Climate data was taken from the Aiyura climate station in all cases.

The main steps were:

- 1. Data for the 57 soils in the 19 RMUs were extracted from the PNGRIS data file
- 2. The SLOPE1 and SLOPE2 values from the PNGRIS data file were inserted into the extracted soil file and one of these was manually selected for each soil. This selection was a "best guess" taking account of the erodibility ratings of the soils and the presumed relative frequencies (soil1 > soil2 > soil3). Only one RMU had SLOPE1 and SLOPE2 values differing by more than one class so errors in this allocation were probably not critical.
- 3. The lookup tables were used to generate a new (Paradox) table with the PLANTGRO codes in the format required by the SOILOUT program. The name fields were generated from the RMU and soil numbers.

- 4. The SOILOUT.EXE program was run to produce PLANTGRO soil files for each of the 57 soils.
- 5. PLANTGRO program was run (using the multiple predictions option) to generate the 285 predictions (57 soils, 5 plants).

Results of the test application of PLANTGRO on PNGRIS RMUs is summarized in Section 4.4 of the main report.

6. Limitations to using PLANTGRO with a large dataset

Steps 1, 3 and 4 in the above procedure can be readily performed on a much larger number of soils. However, step 2 requires manual inspection of each soil and therefore requires more effort if a large number of soils were involved. The effort was relatively minor (at least for the 57 soils tested). Many plant files may not be markedly dependent on slope (erosion hazard should be considered separately) and it may, in fact, be acceptable to simply use the dominant (or mean) slope for all soils in an RMU.

The main limitation to running a much larger (e.g. 1000 soils) data set would be running PLANTGRO and interpreting the results. Even in the multiple prediction model PLANTGRO requires each soil, crop and climate file to be specified and has a limit of 7 soil files per run. Future developments of PLANTGRO should provide output formats which are compatible with data input and output formats which are readily compatible with relational databases for using with computer mapping packages.

7. Computer programmes

The computer programmes developed to extract PLANTGRO data from PNGRIS (SOILOUT.EXE, lookup tables) have been installed on computers in DAL Land Use Section.

ANNEX 2: Definitions of PNGRIS attributes used to define environment subclasses

Inundation type	PNGRIS code
Little or no inundation	0,1,2
Seasonal	3,4
Permanent	5,6
Tidal	7,8

Definitions of the 'Inundation type' environment subclasses

Definitions of the 'Slope' environment subclasses

Slope class	PNGRIS code
Low (<10°)	1,2,3
Moderate (10-20°)	4
High (<20°)	5,6

Definitions of the 'Rock type' environment subclasses

Rock type	PNGRIS code
Alluvial deposits	41,45
Older sediments	40,12
Pyroclastics	46

Definitions of the 'Dominant rock type' environment subclasses

Dominant rock type	PNGRIS code
Non-calcareous sedimentary	11,12,13
Calcareous sedimentary	14,15
Metamorphic	21,22,23
Acid to intermediate igneous	30,32-35,38,46
Basic igneous	31,36,37

ANNEX 3: Summary of crop suitability ratings for PNGRIS RMUs and median environment subclasses according to PNGLES

Key to Abbreviations:

Province:

WES	Western	MOR	Morobe
GUL	Gulf	MAD	Madang
CEN	Central	ESK	East Sepik
MIL	Milne Bay	WSK	West Sepik
NTH	Northern	MAN	Manus
SHY	Southern Highlands	NIR	New Ireland
ENG	Enga	ENB	East New Britain
WHY	Western Highlands	WNB	West New Britain
SIM	Simbu	NSL	North Solomons
EHY	Eastern Highlands	ALLPNG	Totals for the whole of PNG
Crop:			
aard	Cordomom	anah	Cashay

card	Cardamom	cash	Cashew
chil	Chillie	citr	Citrus
coco	Cocoa	cocn	Coconut
h2cof	Harding et al. (1986) arabica co	offee model	
rcof	Robusta coffee	maiz	Maize
mango	Mango	oilp	Oil palm
pepp	Pepper	pine	Pineapple
pota	Irish potato	pyre	Pyrethrum
rice	Rice	rubb	Rubber
vani	Vanilla		

Suffixes:

lo	Low input management
hi	High input management

Suitability ratings:

1	High
2	Moderate
3	Marginal
4	Unsuitable

түре																																_	_		_					_	_	_	_	
AED. ENV. % area		0.0	0.5	75.5	20.7	Ċ	0.0	ς. Υ.Υ	73.3	20.7		0.1	3.7	1.17	20.8	1.2	5.1	69.6	20.7		0.5	4.6	16.1	1.77	Ċ	0.0	7.7 5	5.45		0.1	7.1	37.5	54.5	9	0.0	0.1	93.1		6.4	30.9	1.0	61.0	0.0	5.2
RATINGS BY MED. ENV. TYPE area % area	(km2)	0	178	25291	6952	c		1087	24555	6952		31	1225	24025	6968	408	1720	23315	6952	 	157	1547	5380	26026	d	0	2420 17572	BAC81	04701	31	2395	12573	18248	2296	0	18	31197		2150	10360	320	20447	0	1737
∕₀area		0.0	7.9	63.7	28.4	Ċ		7.1	66.5	26.3		0.7	8.0	56.7	34.6	1.3	13.3	59.1	26.3		0.5	5.7	16.0	77.7	(0.2	0.0 20.1	50.7	0.00	0.3	8.0	33.2	58.5	111	04		88.5		11.0	19.1	1.0	68.9	0.5	7.9
RATINGS BY RMU area	(km2)	0	2637	21341	9533	Ċ	70	2393	22279	8813		241	2672	19003	11595	434	4461	19810	RADG		184	1904	5369	26054	1	78	26/92	10611	19400	110	2665	11118	19618	3710	135	- C	29657		3693	6413	331	23074	156	2655
R/ suitability	rating	~~	2	ო	4	•	-	7	ო	4			2	e	4		2	i en	• 4	r	, -	2	n	4		- (N 0	0 •	đ	-	2	e	4	÷	- ~	1 4	. 4	r	-	2	e	4	-	N
crop	-	card lo	card_lo	card lo	card_lo		cash_lo	cash_lo	cash_lo	cash_lo		chil_lo	chil_lo	chil_lo	chil_lo	citr lo	citr lo	citr lo			coco hi	coco hi	coco hi	coco_hi		coco_lo	coco_lo		coco_10	cocn lo	cocn_lo	cocn_lo	cocn_lo	h)cof hi	h2cof hi				h2cof_lo	h2cof_lo	h2cof_lo	h2cof_lo	rcof hi	rcof_hi
province		MOR	MOR	MOR	MOR	1	MOR	MOR	MOR	MOR		MOR	MOR	MOR	MOR	MOR	MOR	MOR	MOR		MOR	MOR	MOR	MOR		MOR	MOR	NON NON	MOK	MOR	MOR	MOR	MOR	OCM					MOR	MOR	MOR	MOR	MOR	MOR
V. TYPE a		0.0	0.0	7	7		0.0	8	6	7.		0.0	0.	•	8 .	0.0	4	L.	j u	D.	c		i -	. ~		0.	сi і	τņ.	5.	0	7	8	6	c				,	0	0.0	0.0	O,	0.0	0
BY MED. ENV. TYPE a % area		0	0	48.7	50.7		0	0	47.9	50.7		0	22.0	27.1	50.8	C	214		5.13 2.13	nc	C	39.2		55.7		0.0	39		29	0	39.7	9	52.9	c	50	20	1000		0	0	0	100.0	0	22.0
RATINGS BY area	(km2)	C	0	46884	48812		0	810	46100	48812		0	21218	26127	48915	C	20580	26467	10407	1/004	c	37707	3032	53631		0	37707	7061	50955	C	38270	6506	50955	c		- 0	0	1070A	0	0	0	96260	C	21152
%area	5	00	0.0	651	34.9		0.2	23.3	41.6	34.9		0.0	38.8	26.2	35.0		100	107	- 0 - 0	34.8	00	38.8	24.7	39.4		0.0	38.8	24.1	37.1	00	56.2	6.5	37.1		0.0	0.0	0.0	0.001	0.0	0.0	0.0	100.0	00	37.7
RATINGS BY RMU area	(km2)	c	16	62668	33602		225	22404	40055	33602		0	37338	25221	33727	c	00001	67061	4040Z	33555	c	0 87275		37978		0	37378	23221	35687	000	54154	6225	35687	!	16	01 O	0	96260	16	10	0	96260	c	36325
RAT	sunating	÷	- ^	ורי	4		-	2	i e.	4		~	2	ę	4	Ŧ	- c	7 1	· · ·	4	Ŧ	- r	4 6	04		-	2	e	4	Ŧ	- ເ	1 00	9 4		 (.7	τ υ .	4		5	3	4	Ŧ	- 0
Qui	crup				card_lo		cash lo	cash lo	cash lo	cash lo	-	chil lo	chil lo	chil lo	chil_to	- 1-			citr_lo	citr_lo				coco_ni coco_hi	1	coco lo	coco_lo	coco_lo	coco_lo	0			coculo		h2cof_hi	h2cof_hi	h2cof_hi	h2cof_hi	h2rof lo	h2cof lo	h2cof lo	h2cof_lo	roof hi	rcof_hi
	province	1 A IC C			WES		WES	VAFS	MES	WES)	WES	WES	WES	WES			WES	WES	WES				WES)	WES	WES	WES	WES	U LI VI		VVES	WES		WES	WES	WES	WES	VV/ES	WES	WES	WES		WES

RATINGS BY MED. ENV. TYPE area % area (km2)	22.9 70.8	0.6 5.1 37.5 37.5	0.0 7.4 6.7 85.7	0.1 3.1 20.7	3.0 2.2 77.1	2.5 3.9.3 3.9.4	0.0 5.8 59.7 59.7	1.2 1.2.5 13.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0	0.0 54.5 42.8
ATINGS BY A area (km2)	7686 23730	194 1713 17512 12550	0 2470 2250 28703	40 1047 24555 6952	1011 723 5565 25841	854 1121 13210 18063	0 1945 11285 20017	412 3109 24304 4641	0 314 13376 17772	0 0 18268 14342
%area	25.4 66.2	0.9 8.0 51.0 40.1	0.5 5.8 10.4 83.3	0.6 6.6 66.5 26.3	3.3 3.0 13.6 80.1	2.6 4.4 34.6 58.3	0.2 6.4 31.5 61.8	1.0 16.2 51.6 31.2	0.0 2.8 40.8 56.3	0.0 0.5 43.6 55.9
RATINGS BY RMU area (km2)	8507 22193	298 2692 17092 13429	171 1945 3469 27926	197 2222 22279 8813	1107 1021 4541 26842	884 1485 11609 19533	79 2150 10561 20721	334 5413 17305 10459	16 954 13682 18859	0 156 14623 18732
F suitability rating	ω4	- N N 4	← N © 4	τ 0 0 4	- 0 m 4	- N M 4	- N M 4	- N M 4	- N N 4	- 0 M 4
crop	rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hí oilp_hí oilp_hí oilp_hí	oitp_to oitp_to oitp_to oitp_to oitp_to	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_to pyre_to pyre_to pyre_to
province	MOR MOR	MOR MOR MOR	MOR MOR MOR	MOR MOR MOR	MOR MOR MOR NOR	MOR MOR MOR	MOR MOR MOR NOR	MOR MOR MOR MOR	MOR MOR MOR MOR	MOR MOR MOR
BY MED. ENV. TYPE sa % area 2)	21.9 54.7	0.0 22.0 50.7	0.1 0.0 8.4 60.3	0.0 0.8 47.9 50.7	16.7 46.3 14.6 19.5	0.0 39.0 39.9 16.7	0.0 39.6 6.7 53.6	0.0 22.1 50.7	0.0 0.0 54.6 54.6	0.0 0.0 4.0 1.9
RATINGS BY I area (km2)	21085 52670	0 21218 25151 48812	129 0 36966 58064	0 810 46100 48812	16051 44616 14012 18731	0 37578 38424 16055	0 38141 6497 51648	0 21244 25707 48780	0 0 41834 52535	0 0 400 95457
%area	24.1 38.2	0.0 38.8 25.6 35.7	0.4 0.1 55.6 43.9	0.2 23.3 41.6 34.9	0.0 5.6 53.4 41.0	0.0 41.2 39.7 19.1	0.0 39.0 6.5 54.5	0.2 38.6 35.0	0.0 0.0 38.0	0.0 0.0 2.6 97.4
RATINGS BY RMU area (km2)	23177 36784	0 37322 24633 34331	349 67 53582 42288	225 22404 40055 33602	0 5384 51457 39445	0 39649 38220 18417	0 37561 6225 52500	220 37128 25248 33690	0 0 59676 36610	0 10 2472 93804
R suitability rating	ω4	- N Ю 4	- N M 4	- N M 4	-004	← N M 4	- N M 4	- N M 4	- N M 4	t- 0 0 4
crop	rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	ollp_hi ollp_hi ollp_hi hi_hi	oilp_lo oilp_lo oilp_lo oilp_lo	pepp_lo pepp_lo pepp_ro	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo
province	WES WES	WES WES WES	WES WES WES	WES WES WES	WES WES WES	WES WES WES	WES WES WES	WES WES WES	WES WES WES	WES WES WES

.

NV. TYPE	% area	1.7 3.3 36.6 56.1	0.0 7.7 21.0 70.8	0.0 8.8 48.8 37.5	1.2 4.6 39.0 54.5	0.3 0.1 65.3 27.9	0.0 1.0 64.8 27.9	3.3 11.1 44.9 37.3	4.9 10.4 27.9	4.6 9.6 5.0 80.6	3.3
MED. E	%										
RATINGS BY MED. ENV. TYPE	area (km2)	585 1121 1257 18792	0 2571 7035 23730	0 2935 16361 12550	389 1556 13054 18248	84 23 18709 7983	0 296 18580 7983	944 3184 12873 10681	1397 2967 14452 7983	1328 2739 1437 23097	944
	%area	1.8 5.2 35.8 57.2	0.0 11.2 22.1 66.7	0.0 12.0 47.4 40.6	0.9 6.3 32.7 60.2	0.3 0.3 65.4 34.0	0.0 1.7 64.7 33.6	3.2 16.9 40.6 39.3	4.7 15.4 46.6 33.3	3.7 16.4 7.0 72.9	3.2
RATINGS BY RMU	area (km2)	613 1731 12002 19165	1 3749 7403 22358	1 4038 15878 13594	289 2102 10947 20173	84 78 18755 9744	13 489 18541 9618	927 4847 11624 11263	1333 4426 13352 9550	1058 4690 2013 20900	914
	suitability rating	 0 ∞ 4	← N © 4	- N M 4	← 0 ∞ 4	- 0 0 4	- N N 4	← 0 0 4	← 0 0 4	- N 0 4	-
	crop	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_lo
	province	MOR MOR MOR	MOR MOR MOR	MOR MOR MOR	MOR MOR MOR	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD
ТҮРЕ					,						
ED. ENV.	% area	0.1 21.9 55.9 18.3	0.0 39.7 4.1 54.7	0.0 39.7 8.4 50.7	0.0 39.6 6.9 52.9	0.0 0.0 39.8 39.8	0.0 0.1 52.2 39.7	0.0 3.0 47.9 42.9	0.0 2.6 51.5 39.7	0.6 5.7 17.4 67.1	0.6
RATINGS BY MED. ENV. TYPE	area (km2)	129 21041 53807 17635	0 38270 3967 52670	0 38270 8099 48812	0 38141 6626 50955	0 0 18267 13484	9 37 17652 13427	0 1018 16202 14531	0 880 17444 13427	217 1919 5876 22712	217
	%area	0.4 20.7 58.8 20.1	0.0 56.5 38.2 38.2	0.0 56.5 7.9 35.7	0.0 39.0 23.9 37.1	0.0 0.1 51.4 48.4	0.0 0.4 51.3 48.3	0.3 3.8 44.6 51.3	0.3 2.6 48.8 48.3	0.6 8.7 22.8 67.8	0.6
RATINGS BY RMU	area (km2)	349 19937 56660 19340	0 54374 5128 36784	0 54374 7581 34331	0 37561 23038 35687	0 47 17409 16391	9 135 17369 16334	90 1295 15095 17367	90 893 16530 16334	201 2948 7734 22964	201
	suitability rating	~ იო 4	← N M 4	← 0 0 4	← N W 4	- 0α4	← N M 4	← N M 4	- N Ю 4	₩ N 6 4	-
	crop	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi hi nib_hi	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	ര്യാ
	province	WES WES WES	WES WES WES	WES WES WES	WES WES WES	eur eur eur	enr enr enr	enr enr enr	enr enr enr	enr enr enr	GUL

VV. TYPE rea	11.6 43.4 38.5	9.0 5.9 38.5	0.1 1.4 0.0 98.5	0.1 1.7 2.4 95.8	3.4 11.1 4.8 80.5	3.4 11.8 46.7 27.9	3.3 8.1 3.3 85.4	0.0 1.0 64.8 27.9	10.8 4.8 10.8 73.4	9.4 6.9 48.7
Y MED. ENV. % area			0				Ð	ωN	i	
RATINGS BY MED. ENV. TYPE area % area (km2)	3313 12440 11045	2573 1684 12440 11045	23 414 0 28224	23 498 680 27460	969 3182 1376 23074	969 3372 13399 7983	944 2309 943 24465	0 296 18580 7983	3090 1389 3087 21035	2681 1988 13957
%area	16.6 39.1 41.1	8.9 11.6 38.4 41.1	0.9 0.7 0.0 8.4	1.3 3.0 0.3 95.4	4.1 16.1 8.5 71.3	4.1 16.9 42.4 36.5	3.1 9.7 4.5 82.7	1.0 0.8 64.7 33.6	14.2 7.4 12.6 65.8	10.2 12.2 43.3
RATINGS BY RMU area (km2)	4758 11211 11778	2549 3322 11012 11778	251 203 0 28207	371 851 84 27355	1189 4608 2434 20430	1189 4845 12158 10469	891 2781 1286 23703	284 218 18541 9618	4069 2132 3607 18853	2915 3508 12421
R/ suitability rating	004	← N M 4	₩ N M 4	− 0σ4	− 0 0 4	− 064	- 0 0 4	− 0 σ 4	← U M 4	3 2 1
crop	coco_lo coco_lo coco_lo	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi in_dio	oilp_lo oilp_lo oilp_lo
province	MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD MAD	MAD MAD MAD
BY MED. ENV. TYPE a % area 2)	5.7 42.0 42.8	0.7 5.7 41.9 42.8	0.0 0.0 0.0 100.0	0.0 0.3 0.3	0.1 2.5 23.8 67.0	0.1 2.9 51.1 39.7	0.0 0.8 6.2 88.7	0.0 0.1 39.7 39.7	0.9 15.3 34.1 42.7	0.8 15.4 58.6
RATINGS BY M area (km2)	1919 14223 14500	247 1919 14193 14500	0 0 33847	0 0 93 33754	37 843 8045 22691	37 981 17306 13427	9 258 2083 30010	9 37 17652 13427	292 5193 11529 14456	258 5227 19824
%area	8.7 39.2 51.4	1.1 8.3 39.1 51.4	0.0 0.0 100.0	0.0 0.2 99.8	0.2 2.3 29.9 67.6	0.2 3.9 47.2 48.7	0.1 1.3 7.2 91.4	0.0 0.4 51.3 48.3	2.1 9.8 3.3 84.8	3.5 11.7 54.9
RATINGS BY RMU area (km2)	2961 13278 17407	375 2817 13248 17407	0 0 33847	0 60 33787	71 774 10110 22892	71 1314 15966 16496	43 433 2422 30949	9 135 17369 16334	698 3333 1115 28701	1176 3970 18594
RAT suitability rating	0 0 4	← N W 4	← () () 4	- N M 4	← N W 4	-064	-004	г 0 6 4	- N M 4	3 7 1
crop	coco_lo coco_lo coco_lo	cocu_lo cocu_lo cocu_lo cocu_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi bi	oilp_lo oilp_lo oilp_lo
province	enr enr	enr enr enr	ิตา ชิตา ชิตา ชิตา	enr enr enr	enr enr enr	enr enr enr	enr enr enr	enr enr enr	enr enr enr	enr Gnr Gnr

RATINGS BY MED. ENV. TYPE area % area (km2)	31.6	9.0 4.4.8 39.2 8.8	4 .3 44.8 37.3	0.0 0.4 78.9	0.0 0.0 0.0 0.0 0.0	4.7 7.7 15.5 71.9	0.0 15.7 3.5 80.5	0.0 16.4 27.9	9.0 4.4.8 38.5	0.0 39.1 59.2
ATINGS BY M area (km2)	9056	2573 1388 12372 11409	1219 2955 12827 10681	0 107 5886 22608	0 0 1713 25969	1348 2214 4441 20598	0 4510 1017 23074	0 4700 13040 7983	2573 1388 12736 11045	0 0 17026 25764
%area	34.3	7.9 12.4 37.3 42.4	4.3 16.6 41.7 37.4	0.0 0.4 29.4 70.2	0.0 0.0 9.2 90.8	6.9 8.6 21.2 63.3	0.0 21.0 7.7 71.3	0.0 21.8 41.7 36.5	8.0 12.4 38.6 41.1	0.0 0.2 35.6 64.2
RATINGS BY RMU area (km2)	9817	2276 3560 10683 12142	1236 4768 11943 10714	0 107 8433 20121	0 0 2628 26033	1969 2471 6084 18137	0 6012 2219 20430	0 6249 11943 10469	2294 3540 11049 11778	0 67 15493 27956
R suitability rating	4	- N M 4	← N W 4	- 0 ω 4	- 0 n 4	← N 0 4	- N W 4	← N W 4	τ N Ю 4	т N Ю 4
crop	oilp_lo	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	ol_ddbr ol_ddbr ol_ddbr ol_ddbr	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo card_lo
province	MAD	MAD MAD MAD MAD	E SK E SK E SK E SK							
RATINGS BY MED. ENV. TYPE area % area (km2)	18.6	0.6 5.7 41.9 43.0	0.1 2.9 42.4	0.0 0.0 26.4 67.0	0.0 0.0 87.9	0.1 0.7 49.5 42.6	0.0 6.3 17.4 67.0	0.0 6.3 45.2 39.7	0.0 6.3 41.9 .0	0.0 0.0 70.0 29.2
ATINGS BY M area (km2)	6296	208 1919 14175 14557	46 972 17875 14345	0 0 8925 22691	0 0 3473 29765	46 251 16768 14405	0 2136 5897 22691	0 2136 15296 13427	0 2136 14166 14557	0 13 20933 8749
%area	29.9	0.9 8.4 39.1 51.6	0.2 3.9 49.7 46.2	0.0 0.0 32.4 67.6	0.0 0.0 8.0 92.0	0.2 2.0 45.8	0.0 9.4 67.6	0.0 9.4 41.9 48.7	0.2 9.2 39.1 51.6	0.0 3.1 60.8 36.1
RATINGS BY RMU area (km2)	10107	302 2851 13230 17464	80 1322 16821 15624	0 0 10967 22880	0 0 31125	80 667 17594 15506	0 3172 7783 22892	0 3172 14179 16496	56 3106 13221 17464	0 924 18199 10795
RA suitability rating	4	← N W 4	← N © 4	- 0 0 4	← 0 0 4	- 0 0 4	← N M 4	- N M 4	- N M 4	- N M 4
crop	oilp_lo	pepp_lo pepp_lo pepp_lo pepp_lo	pine_to pine_to pine_to pine_to	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo
province	GUL	enr enr enr	อก เกิย เกิย เกิย	enr enr enr	enr enr enr	ากอ อกท อกท	enr enr enr	enr enr cor	eur Gur Gur	N N C C C C C C C C C C C C C C C C C C

RATINGS BY MED. ENV. TYPE area % area (km2)	3.6 5.9 59.2	0.0 11.4 62.5	0.0 9.8 5.9 2.8 5.5 5 5 5 5 5 5	8 8 8 8 9 9	3.6 8.5.3 8.0 9.0	3.6 23.5 63.0	0.0 0.0 00.0	0.0 0.0 8.8 8.8	0.0 11.4 86.5	0.0 11.4
ATINGS BY A area (km2)	1548 2567 12798 25764	0 4963 10438 27219	0 4266 12590 25764	1551 3442 487 37681	1548 2748 10938 27418	1548 3445 10241 27418	19 0 43497	19 246 92 42974	0 4963 676 37662	0 4963
%area	2.2 7.4 26.1 64.2	0.4 11.5 20.9 67.2	0.4 9.9 64.2	2.4 9.9 86.4	2.3 8.3 21.3 68.0	2.3 9.9 68.0	0.0 0.0 0.0 0.0	0.0 0.0 98.9 98.9	0.6 11.3 2.1 86.0	0.4 11.5
RATINGS BY RMU area (km2)	973 3239 11348 27956	162 4995 9098 29261	162 4304 11094 27956	1025 4299 577 37615	1022 3611 9273 29610	1022 4308 8576 29610	19 0 43497	19 378 99 43020	241 4916 922 37437	175 4988
F suitability rating	← 0 € 4	− 0 0 4	- N 0 4	т N Ю 4	← N M 4	⊷ Ω α 4	- N 0 4	← N 0 4	- ოო 4	N -
crop	cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_lo coco_lo coco_lo coco_lo	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo
province	E E SK SK SK SK	E SK E SK SK SK	E E SK E SK SK SK SK	E E SK SK SK SK SK	ш N N N N N N N N N N N N N N N N N N N	н N N N N N N N N N N N N N N N N N N N	н Э С С С С С С С С С С С С С С С С С С	н К К К К К К К К К К К К К К К К К К К	н К К К К К К К К К К К К К К К К К К К	ESK ESK
BY MED. ENV. TYPE sa % area 2)	0.7 4.2 66.3 28.6	0.9 5.0 28.6 28.6	0.9 4.9 65.1 28.6	0.2 5.0 89.8	0.9 5.0 4.7.8 4.6.2	1.5 5.0 47.2 46.2	0.4 11.6 0.1 87.8	0.6 33.4 1.6 64.4	1.9 4.0 1.4 4.9	2.6 3.3
RATINGS BY I area (km2)	205 1266 19847 8566	264 1503 19108 8566	264 1469 19491 8566	59 1490 1457 26878	264 1490 14298 13832	447 1490 14115 13832	129 3480 39 26270	183 9998 482 19255	563 1204 1239 26749	768 999
%area	0.9 11.4 56.7 30.9	1.4 13.8 49.5 35.3	1.6 12.5 55.6 30.2	0.7 14.0 7.9 77.4	0.9 14.1 38.6 46.4	2.7 11.9 39.0 46.4	7.3 0.5 0.1 92.0	7.5 16.4 0.1 76.0	3.6 10.2 15.9 70.2	4.3 9.5
RATINGS BY RMU area (km2)	282 3419 16975 9242	431 4119 14820 10548	482 3752 16645 9039	203 4202 2363 23150	278 4209 11558 13873	795 357 4 11676 13873	2179 162 39 27538	2233 4899 39 22747	1083 3061 4769 21005	1288 2856
R. suitability rating	г 0 б 4	← N © 4	- 0 0 4	-004	- N M 4	- 0 M 4	- 0 m 4	- N M 4	- 0 0 4	- N
сгор	cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_0 coco_0 coco_0 coco_0	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo
province	CENC	N CEN CEN CEN	CEN CEN CEN	CEN CEN CEN	N CEN CEN CCCCC	N N N C C C C C	N N N C C C C C C C C C C C C C C C C C	N N N C E N N C C E N N C C C C C C C C	CEN CEN CEN	CEN

RATINGS BY MED. ENV. TYPE area % area (km2)	26.2 60.4	3.6 1.7 0.7 93.6	3.6 5.9 59.2	1.8 16.2 5.2 75.0	0.2 12.0 34.6 51.4	0.0 2.0 30.1 65.5	3.6 8.4 62.5 5	0.0 0.0 13.1 86.1	0.0 0.0 97.8	9.5 1.6 74.6
\ATINGS-BY I area (km2)	11382 26275	1548 727 322 40731	1548 2567 12798 25764	780 7029 2258 32647	80 5203 15066 22384	0 878 13116 28508	1548 3642 10211 27219	0 0 5703 37482	0 0 861 42563	4127 700 6071 32448
%area	22. 4 65.7	2.3 1.8 2.3 93.5	2.2 7.4 26.1 64.2	0.0 2.3 73.6	0.5 12.7 31.5 55.2	0.0 3.1 28.1 68.8	2.4 10.0 20.4 67.2	0.0 0.0 14.4 85.6	0.0 0.0 4.2 95.8	8.0 2.9 16.4 72.7
RATINGS BY RMU area (km2)	9768 28585	1015 793 1000 40708	973 3239 11348 27956	0 981 1052 4 32011	215 5532 13729 24040	7 1335 12215 29959	1050 4333 8872 29261	0 0 6284 37232	0 0 1811 41705	3485 1249 7154 31628
F suitability rating	ω4	- αα4	- N W 4	- ი ი 4	- ი ღ 4	- 0 n 4	− 0 0 4	- თ დ.4	- N W 4	− 0 € 4
crop	rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi h_dilo	oitp_lo oitp_lo oitp_lo oitp_lo	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi
province	ESK ESK	E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E	Ч Ч С С С С С С С С С С С С С С С С С	ш Я Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х	ш	ш N N N N N N N N N N N N N N N N N N N	ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш	E SK E SK SK SK SK	E E E E E E E E E E E E E E E E E E E
BY MED. ENV. TYPE a % area 2)	65.1 28.8	0.2 3.5 2.4 93.7	0.7 4.2 66.3 28.6	2.0 3.7 17.6 76.4	0.6 5.0 61.3 32.8	0.0 5.0 47.9 46.8	2.6 5.9 20.9	0.0 0.1 26.0 72.4	0.0 0.1 34.1 64.3	1.2 5.7 33.1 58.3
RATINGS BY A area (km2)	19491 8626	59 1045 732 28048	205 1266 19847 8566	597 1097 5280 22850	191 1503 18326 9804	0 1487 14320 14015	768 1760 20663 6248	0 39 7787 21649	0 39 10198 19238	362 1712 9912 17455
%area	49.7 36.4	0.3 9.5 85.8	1.9 10.4 56.7 30.9	3.8 6.1 17.7 72.5	2.8 6.6 49.1 41.4	0.0 10.7 36.8 52.4	6.0 12.0 52.9 29.1	0.0 0.6 33.8 65.6	0.0 0.4 26.3 73.3	3.9 4.6 30.9 60.5
RATINGS BY RMU area (km2)	14873 10901	75 2848 1336 25659	580 3121 16975 9242	1127 1816 5297 21678	835 1985 14697 12401	0 3214 11017 15687	1802 3589 15826 8701	0 179 10105 19634	0 118 .7866 21934	1170 1379 9259 18110
R. suitability rating	ω4	- 0 0 4	- N W 4	N M 4	− 0 ω 4	← N W 4	- N Ю 4	- N M 4	- N N 4	← 0 © 4
crop	rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi hi_hi	oilp_lo oilp_lo oilp_lo oilp_lo	pepp_lo pepp_lo pepp_lo	pine_to pine_to pine_to pine_to	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi
province	CEN	N N N N N N N N N N N N N N N N N N N	N N N N C C C C C C C C C C C C C C C C	N N N N C C C C C C	C C C C C C C C C C C C C C C C C C C	N N N N C C C C C C C C C C C C C C C C	N N N C C C C C C C C C C C C C C C C C	N N N CEN CEEN CEEN CEEN	N N N CEN CEN CEN CEN	N N N N C C C C C

RATINGS BY MED. ENV. TYPE area % area (km2)	0.0 11.5 1.4 86.5	0.0 11.5 26.0 60.4	0.0 9.0 63.0	0.0 0.7 77.6 11.8	0.0 8.8 73.4 11.8	1.7 16.9 58.9 14.7	1.7 16.4 62.7 11.8	1.2 30.6 3.0 58.5	1.2 30.6 36.0 24.8	1.2
λATINGS BY M area (km2)	0 5020 592 37662	0 5020 11298 26275	0 3903 11331 27418	0 267 27926 4260	3155 26428 4260	596 6099 21195 5298	596 5892 22594 4260	430 11033 1074 21071	430 11033 12965 8914	430
%area	0.0 12.3 1.7 86.0	0.0 12.3 22.0 65.7	0.4 11.2 20.4 68.0	0.0 5.2 59.7 35.1	0.2 8.8 55.9 35.1	4.6 19.3 37.8 38.4	4.3 18.6 42.2 34.9	1.9 18.9 5.0 74.3	1.4 19.3 31.4 47.9	4.4
RATINGS BY RMU area (km2)	0 5351 728 37437	0 5357 9574 28585	162 4876 8868 29610	0 1874 21499 12637	60 3168 20145 12637	1650 6932 13595 13833	1534 6713 15183 12580	674 6797 1794 26745	507 6964 11295 17244	1584
R suitability rating	- N Ю 4	← N © 4	0 m 4	− 0 0 4	− Νω4	← 0 0 4	− 0 0 4	<u>-</u> сс, т.	- N 0 4	1
crop	rubb_hi rubb_hi rubb_hi rubb_hi	rubb_lo rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_to card_to	cash_lo cash_lo cash_lo cash_lo	chil_to chil_to chil_to chil_to	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	0 0 0 0 0000 0000 0000 000000	cocn_lo
province	E SK E SK E SK E SK	E SK E SK E SK E SK	E SK SK SK SK	WSK WSK WSK WSK	WSK WSK WSK WSK	WSK WSK WSK	WSK WSK WSK	WSK WSK WSK	WSK WSK WSK	WSK
BY MED. ENV. TYPE a % area 2)	1.4 4.7 4.1 89.4	1.4 4.7 65.1 28.8	0.0 5.7 46.8	0.0 2.0 86.2 8.9	0.0 9.3 8.5 8.9	0.4 16.4 8.9 8.9	1.6 13.0 72.7 8.9	0.0 17.6 11.6 69.5	0.3 18.2 60.8 16.8	0.3
RATINGS BY A area (km2)	406 1393 1239 26749	406 1393 19491 8626	0 1692 14209 14015	0 285 12171 1258	0 1320 11094 1258	56 2318 10082 1258	222 1839 10263 1258	7 2481 1645 9812	43 2576 8591 2367	43
%area	1.0 14.0 70.2	1.0 14.0 48.6 36.4	0.0 11.9 36.5 51.6	0.0 2.5 81.6 15.9	0.1 11.2 72.8 15.9	3.1 15.8 63.7 17.4	4.9 11.8 67.4 15.9	3.3 15.9 11.6 69.2	2.1 17.1 57.5 23.3	3.5
RATINGS BY RMU area (km2)	292 4175 4446 21005	292 4175 14550 10901	0 3575 10917 15426	0 360 11522 2243	21 1583 10278 2243	443 2235 8991 2456	695 1668 9519 2243	465 2251 1636 9773	300 2417 8118 3290	495
RA suitability rating	- N W 4	- N M 4	- N M 4	− αα4	− αω4	⊷ N W 4	− αα4	г 0 б 4	₩ N N 4	1
crop	rubb_hi rubb_hi rubb_hi hi rubb_hi	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo	cash_to cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_lo coco_lo coco_lo	cocn_lo
province	N N N N E E E E C C C C	N N C C C C C C C C C C C C C C C C C C	N N CEN CEN CEN CEN CEN	MIL MIL MIL	H L L M L M L L	IL L MIL M	MIL MIL MIL	MIL MIL MIL MIL	MIL MIL MIL MIL	MIL

RATINGS BY MED. ENV. TYPE area % area (km2)	16.7	50.0	24.8	7.6	0.5	0.0	91.5		0.1	0.1		0.40	1.2	30.7	10.8	50.5	1 2	30.7	47.2	13.3	<u></u>	1.2	0.6	21.5	69.5	0.0	8.8	73.4	11.8		8.8	9.2	26.0	54.0	1.3	16.7	59.0 20.2	C.U2	0.0	31.8	36.0
(TINGS BY ME area (km2)	5998	18000	8914	2725	170	0	32961	7447		c014	0	50244	430	11073	3872	18176	067	11073	16999	1783	C0/4	430	223	7750	25038	0	3155	26428	4260		3160	3321	9360	19454	467	6014	21251	1671	9	11457	12965
area	16.4	31.3	47.9	4.3	0.6	0.0	95.1	с т	4 C	0.9 0	0.0	200.2	3.5	19.4	8.3	68.8	с С	0.2 V 0C	37.0	0.00	09.90	4.1	2.9	4.9	88.2	0.2	8.8	22 2 2 2 2 2 2	35.1		0.0	7.4	36.8	55.8	1.5	21.9	47.2	4.87	1.5	19.3	31.4
RATINGS BY RMU area %i (km2)	5896	11286	17244	1544	220	11	34235	1 6 3 7	1701	3419	11	50015	1269	6987	2993	24761	640	342 7358	13330		14300	1476	1040	1747	31747	60	3168	20145	12637		0	2676	13254	20080	541	7882	17008	6/GUL	535	6936	11295
R suitability rating	2	۳	4	~	2	с С	4	•	- (N (، ر	4	ب	0	e	4	•	- c	ייי	•	4	-	2	r)	4	-	~	4 9	04		-	0	ŝ	4	~	2	ю т	4	-	7	Ϋ́
crop	cocu_lo	cocu_lo	cocu_lo	h2cof hi	h2cof_hi	h2cof hi	h2cof_hi	1 7		h2cot_lo	hZcof_lo	hZcof_lo	rcof hi	rcof hi	rcof hi	rcof_hi					rcot_10	maiz_hi	maiz_hi	maiz_hi	maiz_hi	mana lo			mang lo		oilp_hi	oip_hi	oilp_hi	oilp_hi	oilp_lo	oilp_to	oilp_lo		pepp_lo	pepp_lo	pepp_lo
province	WSK	WSK	WSK	WSK	WSK	WSK	WSK		NON	WSK	WSK	WSK	WSK	WSK	WSK	WSK		MOW NOW	NOVY .		WSK	WSK	WSK	WSK	WSK	WSK	W/SK	VICA	WSK		WSK	WSK	WSK	WSK	WSK						
RATINGS BY MED. ENV. TYPE area % area (km2)	14.1	60.8	16.8	2.0	0.0	0.0	98.0	0	2.0	17.5	0.0	80.5	2.9	10.5	15.4	69.4		4.5 0.0	0.9 70.0	0.07	9.3	0.0	11.6	11.4	75.7	00	0.0	3.0 7	0.0 9.0		12.3	5.2	14.1	66.1	3.9	14.6	64.2	13.4	0.0	18.7	59.7
ATINGS BY N area (km2)	1996	8591	2367	278	0	4	13843		2/8	2466	4	11377	408	1485	2170	9803	4	630	1253	1996	1316	0	1640	1617	10694	C	0001	1320	1258		1736	737	1995	9340	553	2066	9063	1895	0	2635	8431
%area	16.9	56.3	23.3	4.2	0.2	0.0	95.6		4.2	10.7	0.0	85.1	6.2	6.6	17.0	67.5		9.0	10.5	62.3	18.3	2.1	8.9	12.0	76.9	40		0.11	15.9		14.0	8.5	12.2	65.2	5.2	16.5	58.9	. 19.3	2.9	16.8	55.2
RATINGS BY RMU area (km2)	2383	7957	3290	587	25	4	13509	1	185	1513	4	12021	877	1305	2408	9535		1269	1480	8/93	2583	303	1260	1697	10865	U S		400L	102/8 2243	1	1975	1207	1727	9216	741	2333	8318	2733	406	2379	7803
R/ suitability rating	2	e	4		. 2	<u>م</u> ا	4		-	2	e	4	-		1 01	9 4		- 1	0 0	τ ι .	4	-	- 2	l en	94		- (N (Ф	r		2	e	4	1	7	e	4	-	2	ю
crop	cocn lo	cocn lo	cocn_lo	h2cof hì	h2cof hi	h2cof hi	h2cof hi	I	h2cof_lo	h2cof_lo	h2cof_lo	h2cof_lo	rcof hi	rcof hi		rcof hi	I	rcof lo	rcofilo	rcof_lo	rcof_lo	maiz hi	maiz hi	maiz hi	maiz_hí	<u> </u>		mang_lo	mang_lo mang_lo		oilp hi	oilp hi	oilp hi	oilp_hi	oilp lo	oilp_lo	oilp_lo	oilp_lo	pepp lo	pepp lo	pepp_lo
province	MIL	MIL	MIL	MII	MI	MI	MIL		MIL	MIL	MIL	MIL	IIW	MI		MIL		MIL	MIF	MIL	MIL	IIW	MI	WI	MIL	117V		MIL	MIL		MIL	MIL	MIL	MIL	MIL						

RATINGS BY MED. ENV. TYPE area % area (km2)	24.8	1.2 32.9 14.7	0.0 0.5 45.5 47.9	0.0 0.0 78.3	1.4 7.6 46.3 44.0	0.0 32.3 50.5	0.0 32.3 51.7 13.3	1.2 30.6 36.0 24.8	0.0 0.0 14.1	0.0 0.0 85.9 14.1
ATINGS BY M area (km2)	8914	430 11858 16314 5298	0 170 16387	0 0 7241 28192	520 2753 16685 15838	0 11618 5501 18176	0 11618 18628 4783	430 11033 12965 8914	0 0 1802 296	0 0 1802 296
%area	47.9	2.3 21.6 38.1 38.0	0.0 0.5 35.4 64.0	0.0 0.0 19.7 80.2	4.5 7.4 41.7 46.3	0.3 23.7 7.2 68.8	0.3 36.0 39.9	1.7 19.0 31.4 47.9	0.0 0.0 85.6 14.4	0.0 0.0 85.6 14.4
RATINGS BY RMU area (km2)	17244	828 7777 13736 13669	0 185 12762 23063	0 11 7111 28888	1637 2667 15023 16683	116 8540 2593 24761	116 8540 12974 14380	614 6857 11295 17244	0 0 1795 303	0 0 1795 303
R suitability rating	4	- N Ю 4	с 0 с 4	← N 0 4	← N M 4	₩N W 4	₩ ₩ ₩ ₩ ₩	← N Ю 4	τ N W 4	← N © 4
crop	pepp_lo	pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubt_hi rubb_hi rubb_hi rubb_hi	ol_ddun ol_ddun ol_ddun ol_ddun	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo cash_lo
province	WSK	WSK WSK WSK WSK	WSK WSK WSK	WSK WSK WSK	WSK WSK WSK	WSK WSK WSK WSK	WSK WSK WSK	WSK WSK WSK	MAN MAN MAN MAN	MAN MAN MAN MAN
RATINGS BY MED. ENV. TYPE area % area .(km2)	17.9	3.2 22.9 63.4 7.5	0.0 0.0 31.0 67.1	0.0 0.0 19.7 79.4	7.5 5.7 20.7 63.7	0.0 18.0 11.4 69.4	0.0 19.0 9.3 9.3	0.4 18.6 60.8 16.8	0.7 2.1 75.1 20.6	0.7 11.2 63.4 20.6
ATINGS BY N area (km2)	2527	458 3239 8955 1057	0 7 4383 9476	0 0 11216	1054 800 2922 9000	0 2538 1604 9803	0 2684 9635 1316	56 2621 8591 2367	150 462 16915 4627	161 2517 14281 4627
%area	25.0	6.4 20.9 56.5 16,3	0.0 0.2 33.5 66.3	0.0 0.1 15.3 84.7	7.1 9.0 62.0	0.6 19.9 12.0 67.5	0.6 20.5 60.6 18.3	2.8 16.9 57.0 23.3	0.7 5.4 61.5 32.4	1.6 10.3 55.7 32.4
RATINGS BY RMU area (km2)	3537	897 2949 7977 2302	0 27 4735 9363	0 13 2155 11957	1004 1267 3100 8754	90 2811 1689 9535	90 2891 8561 2583	396 2389 8050 3290	150 1221 13840 7299	369 2315 12527 7299
R. suitability rating	4	← 0 © 4	← 0 0 4	- 0 m 4	← 0 0 4	← N W 4	← 0 0 4	- 0 € 4	- Νω4	← U M 4
crop	pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	rubb_{0 rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo
province	MIL	MIF MIF MIF	WIF MIF MIF	MIL MIL MIL	MIL MIL MIL	WIL MIL MIL MIL	MIL MIL MIL	MIL MIL MIL	HTN HTN HTN HTN	HTN HTN HTN HTN HTN

AU RATINGS BY MED. ENV. TYPE %area area % area (km2)		676	701	296	>>1		3.6 0 0.0	1781 5		2	0.0 0.0	676		57.9 997 47.5	c			701	14.4 296 14.1		2	676 3	676 701	676 701 296	296 296	2366 2966 2966 2966 2966 2966 2966 2966	29616 296100 2961000	2961 2961 2961 2961 2961 2961 2961 2961	201 201 201 201 200 200 200 200 200 200	676 701 296 0 2098 2098 0 0	296 296 0 2098 0 2098 0 0 0	296 296 2098 0 0 0 0 0	576 701 296 0 2098 0 2098 2098	2098 2098 2098 2098 2098 2098	201 201 2038 2098 2098 2098 2098 2098 2098 2098	296 701 296 0 2098 0 2098 0 2098 0 0 0 0	676 701 296 0 2098 0 2098 0 2098 0 0 0 655	676 701 296 0 2098 0 2098 0 0 0 0 0 0 0 0 997	701 701 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 0 2008 0 2009 2009	576 701 296 0 2098 0 2098 0 0 0 0 0 0 0 0 0 997	676 701 296 0 2098 0 2098 0 2098 0 676 676	676 701 296 2098 2098 0 2098 0 2098 0 676 0 701	576 701 296 0 2098 0 2098 0 2098 0 2098 0 2098 0 2098 2098
0.0						0.0			303 14.4		0.0	c							303 14.4																								
KALINGS BY RMU suitability area rating (km2)		2	ŝ			-	2	10	0 4	r	-		1 6	4		-	~	о С	4			₩ 0	- N 0	← 0 0 4	t 0 0 4	-004 -	-004 -0	- N 0 4 - N 0	-004 -004	- 0 0 4 - 0 0 4 -	-004 -004 -0	-004 -004 -00 2	тока тока тока тока тока тока	-004 -004 -004 -	-004 -004 -004 -0	-004 -004 -004 -0	- NW4 - NW4 - NW4 - NW4						
crop		N chil lo					N citr lo		N citr lo		N coco hi							N coco_lo	Ť		N cocn_lo					<u>-</u>		בבב															
TYPE province	MAN				_		MAN			_	MAN							MAN																									
RATINGS BY MED. ENV. TYPE area % area (km2)	50 U 7	C					16.9		017 20.6				Ŧ			213 0.9		159 41.6	7821 34.7			(N		(146)																			
%area		16.3 4524			42.4 14	9.4 20	α		38.4 11617 32.4 4627		73 21			9.4 2.337 70.6 15437					45.0 78																								
RATINGS BY RMU area (km2)	10111/	3670	8073		1999	2109	AARA		8653 7793	1293	1637	2000	0007	z120 15895		506	4688	7183	10133	22	1220	1220 3967	1220 3967 7190	1220 3967 7190 10133	1220 3967 7190 10133	1220 3967 7190 10133 694	1220 3967 7190 10133 694	1220 3967 7190 10133 694 14	1220 3967 7190 10133 694 14 21802	1220 3967 7190 10133 694 14 21802 21802	1220 3967 7190 10133 694 694 694 694	1220 3967 7190 10133 694 694 3071 0 21802 694	1220 3967 7190 10133 694 694 694 694 3071 18745	1220 3967 7190 10133 694 694 3071 18745 0 18745	1220 3967 7190 10133 694 694 3071 243 243	1220 3967 7190 10133 694 694 3071 18745 243 4643	1220 3967 7190 10133 694 694 694 18745 243 243 2381	1220 3967 7190 10133 694 694 694 694 18745 2381 243 2381 15243	1220 3967 7190 10133 694 694 694 3071 18745 243 243 243 243 15243	1220 3967 7190 10133 694 694 694 694 18745 2381 15243 15243	1220 3967 7190 694 694 694 694 694 18745 2381 15243 15243 15243 1249 1249	1220 3967 7190 10133 694 14 14 121802 18745 18745 243 243 243 243 243 243 15243 15243 15243 7835 7835	1220 3967 7190 10133 694 694 694 3071 18745 2381 18745 2381 15243 15243 15243 15243 15243 15243 15243 15243 15243 15243 15243 15243 15267 15267 15267 15267 15267 15267 15267 1667 176 176 176 176 176 176 176 176
RA suitability rating	Ê T	- 0	1 6	- r	4	+	- ~	4	r) -	4	Ŧ	- (7	n 4			2	e 2	9 4	r	-	- 0	- 0 r	- ი ი 4	- 0 0 4	-004 -	-004 -0	- N 00 4 - N 6	- N W 4 - N W 4	- N W 4 - N M 4 -	- N M 4 - N M 4 - N	- N M 4 - N M 4 - N M	-NW4 -NW4 -NW4	-NW4 -NW4 -NW4 -	-NW4 -NW4 -NW4 -	-004 -004 -004 -0	- N M 4 - N M 4 - N M 4 - N M	-NW4 -NW4 -NW4 -NW4	-NW4 -NW4 -NW4 -NW4		- NW4 - NW4 - NW4 - NW4 - N	-004 -004 -004 -000 -0004 -0004 -000	-NW4 -NW4 -NW4 -NW4 -NW4
crop					chillo	citr lo			citr_lo	CITT_10				coco_hi coco_hi	1	coco lo	coco lo				cocn lo	cocn_lo cocn_lo	cocn_lo cocn_lo	cocu_lo cocu_lo cocu_lo	cocn_lo cocn_lo cocn_lo cocn_lo	cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h3cof_hi	cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi	cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_hi h2cof_hi	cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_hi h2cof_hi	cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo	cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo h2cof_lo	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo h2cof_lo h2cof_lo	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo h2cof_lo h2cof_lo	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo rcof_hi rcof_hi	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo n2cof_lo rcof_hi rcof_hi	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_hi n2cof_lo h2cof_lo rcof_hi rcof_hi rcof_hi	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo rcof_hi rcof_hi rcof_hi	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_hi rcof_hi rcof_hi rcof_hi rcof_hi rcof_hi	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_lo h2cof_lo rcof_hi rcof_lo rcof_lo rcof_lo	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi rcof_hi rcof_hi rcof_hi rcof_hi rcof_hi rcof_lo rcof_hi	cocn_lo cocn_lo cocn_lo cocn_lo cocn_lo h2cof_hi h2cof_hi h2cof_lo h2cof_hi rcof_hi rcof_hi rcof_lo rcof_lo rcof_lo rcof_lo rcof_lo
province	T LL I				HIN	NTH			HTN	H N				H I N		NTH	NTH	NTH	NTH		HTN	NTH NTH	NTH NTH NTH	N TH NTN HTN HTN	NTH NTH NTH NTH	NTH NTH NTH NTH NTH	HTN HTN HTN HTN HTN HTN HTN	HTN NTH HTN NTH HTN NTH HTN NTH HTN NTH	HTN NTH HTN HTN HTN HTN HTN HTN HTN HTN HTN	HTTN NTT HTT	HTTN HTTN HTTN HTTN HTTN HTTN HTTN HTTN	HTTN HTTN HTTN HTTN HTTN HTTN HTTN HTTN	HTNN NNNN NNNN HTNN HTNN NNNN HTNN HTNN	HTN N HTN HTN HTN HTN HTN HTN HTN HTN HT	HTNN HTNN HTNN HTNN HTNN HTNN HTNN HTNN	HTTN HTTN HTTN HTTN HTTN HTTN HTTN HTTN	HTTN HTTN HTTN HTTN HTTN HTTN HTTN HTTN	HTTN HTTN HTTN HTTN HTTN HTTN HTTN HTTN	HTTN HTTN NNN HTTN HTTN HTTN NNN HTTN HTTN HTTN	HTTN HTTN HTTN HTTN HTTN HTTN HTTN HTTN	HTTN NNNN NNNN HTTNN	HTTN NNN HTTNN H	HTTN HTTN NNN NNN HTTNN

RATINGS BY MED. ENV. TYPE area % area (km2)	0.0 90.0	0.0 0.0 85.9 14.1	10.0 22.2 33.3 34.5	0.0 32.2 46.4 1.1	0.0 32.2 33.4	0.0 32.2 33.4 14.1	0.0 0.0 32.2 47.5	0.0 0.0 100.0	0.0 21.1 24.1 34.5	0.0 32.2 47.5
ATINGS BY M area (km2)	0 1888	0 0 1802 296	210 466 698 724	0 676 974 23	0 676 701 296	0 676 701 296	0 0 676 997	0 0 2098	0 443 506 724	0 676 425 997
%area	4 .9 89.5	0.0 0.0 85.6 14.4	9.2 31.6 12.4 46.9	1.7 39.1 35.9 3.4	0.0 38.1 47.5 14.4	0.0 42.1 43.5 14.4	0.0 0.0 42.1 57.9	0.0 0.0 100.0	0.0 11.5 41.6 46.9	0.0 38.1 4.0 57.9
RATINGS BY RMU area (km2)	103 1877	0 0 1795 303	193 662 983	35 820 1172 71	0 996 303	0 883 912 303	0 0 883 1215	0 0 2098	0 242 873 983	0 799 84 1215
F suitability rating	ю 4	- N M 4	- N 0 4	- U M 4	-064	-064	- N M 4	- 0 ω 4	- ი ღ 4	← 0 ਲ 4
crop	maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi oilp_h	oilp_lo oilp_lo oilp_lo oilp_lo	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi
province	MAN MAN	MAN MAN MAN	MAN MAN MAN	MAN MAN MAN	MAN MAN MAN MAN	MAN MAN MAN MAN	MAN MAN MAN	MAN MAN MAN MAN	MAN MAN MAN MAN	MAN MAN MAN MAN
BY MED. ENV. TYPE a % area 2)	5.6 75.4	1.4 9.8 63.4 20.6	13.3 7.2 16.7 56.2	0.2 25.5 25.2 25.0	0.0 21.1 34.7	0.9 54.4 23.2	0.0 0.7 34.9 64.4	0.0 0.0 26.0 74.0	0.8 17.7 26.9 51.1	0.0 24.9 7.0 64.4
RATINGS BY A area (km2)	1260 16973	310 2206 14281 4627	2988 1610 3748 12650	52 5751 10183 5621	0 4757 9831 7821	213 4477 12250 5214	9 148 7861 14492	0 7 5851 16652	170 3993 6052 11493	0 5600 1578 14499
%area	1.9 79.4	6.7 5.2 32.4	13.0 8.6 17.0 61.4	5.5 18.2 38.5 37.8	0.9 19.6 34.4 45.0	2.6 19.2 35.9 42.4	0.0 1.1 32.7 66.1	0.0 0.0 20.4 79.6	4.7 16.8 21.7 56.8	0.5 21.6 10.2 67.7
RATINGS BY RMU area (km2)	435 17870	1505 1179 12527 7299	2925 1927 3827 13831	1245 4086 8676 8503	209 4422 7746 10133	580 4313 8079 9538	9 247 7371 14883	0 7 4587 17916	1069 3784 4882 12775	121 4851 2295 15243
R/ suitability rating	ω4	, 0 0 4	- 0 ω 4	← 0 0 4	← 0 0 4	← 0 0 4	- N N 4	₩ N W 4	← N M 4	← U Ø 4
crop	maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi h_ni	oilp_lo oilp_lo oilp_lo oilp_lo	pepp_lo pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo o	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi
province	NTH	NTH NTH NTH HTN	N TH NTH NTH HTN HTN	NTH NTH NTH NTH	NTH NTH NTH NTH	NTH NTH NTH NTH	NTH NTH NTH NTH	NTH NTH NTH HTN	NTH NTH NTH NTH	NTH NTH NTH NTH

TYPE										
MED. ENV. [.] % area	0.0 32.2 33.4 14.1	0.0 32.2 33.4 14.1	0.0 5.2 83.4 10.9	0.0 0.0 88.7 10.9	2.5 18.4 62.7 10.9	0.3 23.1 57.7 10.9	2.2 19.3 14.1 59.5	0.3 25.9 52.4 16.4	2.2 24.1 52.4 16.4	0.0
RATINGS BY MED. ENV. TYPE area % area (km2)	0 676 701 296	0 676 701 296	0 501 8023 1046	0 0 8524 1046	244 1767 6033 1046	33 2222 5550 1046	208 1853 1357 5717	33 2490 5038 1574	208 2315 5038 1574	0
6area	0.0 38.1 47.5 14.4	0.0 38.1 47.5 14.4	0.0 7.9 82.6 9.5	0.0 0.0 90.5 9.5	11.0 20.2 59.3 9.5	6.2 55.6 9.5	10.4 18.3 22.0 49.3	7.6 25.0 52.6 14.8	10.6 21.8 52.8 14.8	0.0
RATINGS BY RMU area ? (km2)	0 996 303	0 799 303	0 764 7939 912	0 0 8703 912	1062 1938 5703 912	599 2754 5350 912	998 1764 2113 4740	734 2402 5056 1423	1017 2097 5078 1423	0
R suitability rating	← N Ю 4	- 0 0 4	- Νω4	+- N M 4	← N W 4	 064	− 0σ4	− 0€4	с 0 ю 4	-
crop	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo cash_lo	chit_lo chit_lo chit_lo chit_lo	citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_lo coco_lo coco_lo coco_lo	cocu_lo cocu_lo cocu_lo cocu_lo	h2cof_hi
province	MAN MAN MAN MAN	MAN MAN MAN MAN	NIR NIR NIR	NIN NIR NIR NIR	NIR NIR NIR	NIR Nir Nir Nir	NIR NIR NIR NIR	NIR Nir Nir	NIR NIR NIR	NIR
ТҮРЕ										
BY MED. ENV. TYPE a % area 2)	0.0 29.8 38.1 30.5	0.0 27.3 37.5 34.7	0.2 17.1 54.5 25.0	0.0 0.0 72.2 25.0	0.0 10.3 55.5 31.3	0.0 11.4 60.2 25.0	0.0 2.6 9.5 79.7	0.0 2.6 29.9 65.0	0.0 2.6 29.9 65.0	12.7
RATINGS BY area (km2)	0 6715 8578 6861	0 6146 8442 7821	51 4391 13985 6406	0 0 18524 6406	0 2642 14241 8033	0 2924 15428 6406	0 674 2431 20429	0 674 7660 16657	0 67 4 7660 16657	3265
%area	0.0 27.4 34.3 38.2	1.4 22.0 31.5 45.0	0.2 14.7 53.7 31.4	0.0 0.0 68.6 31.4	0.0 6.6 38.2 38.2	0.0 8.6 63.2 28.2	0.0 2.6 15.6 81.8	0.0 2.6 27.1 70.3	0.0 2.6 27.1 70.3	9.9
RATINGS BY RMU area (km2)	0 6170 7731 8609	319 4961 7097 10133	51 3767 13778 8044	0 0 17596 8044	0 1688 14149 9803	0 2212 16209 7219	0 674 3993 20973	0 674 6942 18024	0 674 6942 18024	2549
RA suitability rating	- 0 0 4	← N W 4	← N W 4	← O © 4	 0 € 4	← 0 0 4	- 0 ω 4	← 0 © 4	- αω4	
crop	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo	card_lo card_lo card_lo card_lo	cash_to cash_to cash_to cash_to cash_to	chil_lo chil_lo chil_lo chil_lo	citr_to citr_to citr_to citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_lo coco_lo coco_lo coco_lo	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hi
province	NTH NTN NTH NTH	HTN HTN HTN HTN	SHY SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY SHY	SHΥ

RATINGS BY MED. ENV. TYPE area % area (km2)	5.0 0.0 95.0	5.0 11.8 0.0 83.1	0.0 23.4 14.6 59.0	0.0 30.3 58.3 10.9	0.0 18.2 73.9	0.0 0.0 88.7 10.9	18.5 3.0 52.9	0.0 31.2 59.0 9.8	2.2 24.1 52.4 16.4	0.0 26.1 60.1
λATINGS BY M area (km2)	483 0 9132	483 1138 7994	0 2252 1407 5672	0 2918 5606 1046	0 1754 276 7105	0 0 8524 1046	1777 284 1992 5082	0 3003 5673 939	208 2315 5038 1574	0 2505 5780
%area	0.0 5.0 95.0	0.0 4.8 20.0 75.2	0.0 28.3 22.7 49.0	0.0 34.7 55.5 9.7	0.0 13.7 10.6 75.7	0.0 0.0 90.5 9.5	15.1 13.7 24.8 46.4	0.0 35.2 52.8 11.9	10.4 22.0 52.8 14.8	0.0 35.5 55.3
RATINGS BY RMU area (km2)	0 483 9132	0 458 1922 7235	0 2722 2181 4712	0 3339 5339 937	0 1322 1019 7274	0 0 8703 912	1448 1319 2384 4464	0 3389 5079 1147	1002 2112 5078 1423	0 3410 5318
Rv suitability rating	004	- N N 4	- N M 4	- N N 4	- N N 4	← N M 4	- N M 4	N M 4	← N © 4	← 0 M
crop	h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oip_hi oip_hi oip_hi hi_hi hi	oilp_lo oilp_lo oip_lo oilp_lo	pepp_lo pepp_lo pepp_lo pepp_lo	pine_to pine_to pine_to
province	NIR Nir Nir	NIN NIN NIN NIN	NIR NIR NIR NIR	NIR Nir Nir	NIR NIR NIR NIR	NIR NIR NIR	NIR NIR NIR	NIR NIR NIR	NIR NIR NIR NIR	NIR NIR NIR
RATINGS BY MED. ENV. TYPE area % area (km2)	0.8 0.3 86.2	12.7 13.8 2.5 71.0	0.0 0.2 65.4	0.0 1.6 387.2 38.0	0.0 2.4 13.8 83.8	0.0 0.0 72.2 25.0	2.1 0.6 11.1 78.0	0.0 2.6 31.4 63.4	0.0 2.6 65.0	0.0 13.1 52.8
ATINGS BY N area (km2)	209 77 22089	3265 3528 639 18208	0 51 6640 16768	0 408 14657 9748	0 628 3535 21477	0 0 18524 6406	529 145 2838 19997	0 674 8042 16250	0 67 4 7660 16657	0 3357 13526
%area	3.4 0.0 86.7	9.5 14.8 0.0 75.7	0.0 0.3 33.5 66.2	0.0 1.8 52.4 45.9	0.0 2.9 13.0 84.1	0.0 0.0 68.6 31.4	0.0 2.1 0.6 97.4	0.0 2.6 68.8 68.8	0.0 2.6 27.1 70.3	0.0 9.2 55.8
RATINGS BY RMU area (km2)	867 0 22224	2444 3796 0 19400	0 72 8599 16969	0 451 13429 11760	0 744 3336 21560	0 0 17596 8044	0 529 145 24966	0 674 7333 17633	0 674 6942 18024	0 2360 14302
RA suitability rating	0 0 4	– N W 4	- N M 4	← N M 4	- N W 4	← N M 4	← N W 4	- N M 4	 αα4	n 2 →
crop	h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi h_hi	oilp_lo oilp_lo oilp_oilp_oilp_oilp_lo	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo
province	SHY SHY SHY	SHY SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY	SHY SHY SHY

ТҮРЕ	_																																					
MED. ENV. % area	10.9			40.5	59.0				71.5	0	0.0	23.2	23.9	52.4	1.8	24.8	13.9	59.0		0. - C	0.82	2.7c 10.9		2.5	19.3	50.8 16.4			95.3	4.1	Ċ	0.0	C 7 0	4.1		0.2	15.2	80.2 4.1
RATINGS BY MED. ENV. TYPE area % area	1046	C		3898	5672	c		0	6875	c		2234	2299	1500	175	2384	1339	5672	100	C/1	2040	1046		244	1852	1574	c	р с <u>т</u>	14392	614	c	349	12660	614		30	2301	12113 614
%area	9.2	00	000	48.3	48.7	00		0.0 a 7 c	72.2	6	0.0	24.4	29.8 45.0	P.C4	2.6	29.3	19.1	49.0	0 (0 V C C C C	0.00 RA	0.40 9.7		11.0	21.2	14.8	00		93.0	5.2		5 5 7		5.2		- c 4 1	13.7	/9.6 5.3
RATINGS BY RMU area	887	c	288	4640	4687	C		7660	6946	c		2343	2861	441	254	2814	1835	4712	760	2171	5174 5226	937	0001	1062	2040	1423	C	264	14054	791	c	277	13546	791		215	1/07	12021 802
R suitability ration	4		2	i ကိ	4	-	- ~	4 (*	4	•	- (N	، س	4		2	e	4	Ŧ	- r	n 1	04	•	- (2 6	4 ر	~	- ~	၊က	4	÷	- ^	1 (*	94		- (N (υ 4
crop	pine_lo	pota hi	pota hi	pota hi	pota_hi	nvre lo			pyre_lo	id coir			rice_hi		rubb_hi	rubb_hi	rubb_hi	rubb_hi	d ddin			rubb_lo		vantilo	vani_io	vani_lo	card lo	card lo	card lo	card_lo	ol daeo	cash lo		cash_lo	:	chil_lo		chil_lo
province	NIR	NIR	CIN			מוא		NIR	NIR	NIR	NIR	ally			NIR		Y Z		NIR	FNB	ENB	ENB	ENB	ENR B	FNB		ENB		ENB									
, түре	~				_	_																																
BY MED. ENV. TYPE a % area 2)	31.3	0.0	12.8	22.1	56.8	0.0	4	56.4	37.1			- C	20.1 55.7	4.00	0.0	6.0	20.1	65.4		9 C 9 G	525	38.0	Ċ	ח. ח	0.70.0	65.0	0.0	3.3	34.6	52.1	00	0.0	39.2	52.1	0	0.0	ה - ר מ	56.8
RATINGS BY area (km2)	8033	0	3293	5667	14574	0	369	14472	9523	c		2324 5135	0433 14150		0	1531	5160	16768	C	1606	13459	9748	c	0	7660	16657	0	386	4095	6167	0	0	4646	6167	c	0 CC F	3054	6727
%area	35.0	0.0	13.0	34.6	52.5	0.0	7.6	51.2	41.2		• C		40.0 52 0	76.70	0.0	6.3	27.5	66.2	00	9 9 9 9	47.3	45.9		0.0 0	27.1	70.3	0.0	11.3	31.6	57.0	0.0	1.0	41.9	57.0	c	0.0 + 0.0 -	2 - CC	67.8
RATINGS BY RMU area (km2)	8978	0	3321	8865	13454	0	1946	13125	10569	C	1001	1001	13335		0	1628	7043	16969	C	1745	12135	11760	c	0	6942	18024	0	1342	3743	6754	0	119	4966	6754	c	0 77	3630	8023
RA suitability rating	9 4	-	2	£	4	-	2	ന	4	÷	- r	n 6	0 4	r	-	2	ς	4	÷	~~~	100	4	-	- ເ	4 63) 4		2	ო	4	*	2	ო	4	Ŧ	- 0	1 (*) 4
crop	pine_lo	pota_hi	pota_hi	pota_hi	pota_hi	pyre lo	pyre lo	pyre lo	pyre_lo	rice hi	rice bi	rice hi	rice hi		rubb_hi	rubb_hi	rubb_hi	rubb_hi	rubb to	rubb lo	rubb_lo	rubb_lo	of item	vani_io	vani lo	vani_lo	card lo	card lo	card_lo	card_lo	cash lo	cash lo	cash lo	cash_lo	cl lido	chil to		chil lo
province	SHY	SHY	SHY	NH2	>HS	λHS	;	SHY	SHY	SHY	SHY	SHY	SHY	SHY	SHY	AHS		SHY	SHY	ENG	ENG	ENG	ENG	ENG	ENG	ENG	ENG	ENC		ENG	ENG							

RATINGS BY MED. ENV. TYPE	%	4.0 15.9	76.0	4.1	Ċ	7.0	15.1	29.2	45.2	0.2	19.4	71.6	8.5	0.2	19.4	71.6	0.0	3.2	0.0	0.0	30.0	3.2	15.3 2.2	0.0	0.10	0.0	10.4 72.5	40.8		0.4	13.9 75 7	41	-	0.0	4 G 7 L	88.6		0.5	
TINGS BY ME	area (km2)	602 2408	11485	614	Ļ	52 25	22/6	5930	6827	30	2928	10816	1284	30	2928	10816	1284	480	0	0	14029	480	2309	00000	02621	0	2331	6157		55	2103	614	r D	0	104	13383		70	6/7
	%area	5.0 17.3	72.5	5.2		1.2	13.8	39.4	45.6	1.2	18.9	70.1	9.7	2.5	17.7	70.1	д. ,	0.0	2.9	0.3	90.9	0.0	2.8	15.6	81.b	1.7	13.4	43.4		5.3	15.6 72.6	73.0 5.6	0.0	0.5	- ''7	87 D	2	0.5	4.6
RATINGS BY RMU	area (km2)	755	10950	791		178	2078	5958	6895	183	2861	10598	1467	373	2671	10598	1467	0	433	42	14634	0	427	2357	12325	262	2024	1000	5	199	2351	GITT	044	79	415	13148		02	702
	suitability rating	ر د	4 6) 4		~	2	e	4		. 0	с С	4	-	2	εų .	4	-	2	e	4	-	2	ი.	4	-	0 0	τ η τη	r	~	0 0	، ر	4	~ (2 1	°	1	-	7
	crop	citr_lo	cit lo	citr lo	-	coco_hi	coco_hi	coco_hi	coco_hi			coco lo	coco_lo	cocu_lo	cocu_lo	cocn_lo	cocn_lo	h2cof_hi	h2cof_hi	h2cof_hi	h2cof_hi	h2cof lo	h2cof_lo	h2cof_lo	h2cof_lo	rcof_hi	rcof_hi	rcot_hi		rcof_lo	rcof_lo	rcof_lo	rcot_lo	maiz_hi	maiz_hi			mang_lo	mang_lo
	province	ENB		ENB FNB	Ì	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	• ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	ENB	END	ENB	ENB	ENB	ENB	ENB	ENB		ENB	ENB	ENB
S BY MED. ENV. TYPE	% area	0.0	4.2.4	42.5 49.6		0.6	0.5	0.0	0.66		0.0	0 4.4	90.6	0.0	1.0	8.4	90.6	3.3	6.5	1.0	89.3	3.3	29.1	0.0	66.6	0.0	1.0	3.3 0.1	106	0.0	1.0	30.0	62.5	0.0	1.9	2.4	95.6	0.0	0.0
RATINGS BY M	area (km2)	0	283	503/ 6878		68	54	0	11717	c	- - -	771	10723	o	122	994	10723	386	764	120	10569	386	3445	0	7888	0	122		11331	0	122	3555	7394	0	229		11321	0	0
	%area	0.0	12.8	34.5 5 7 7	1.20	0.6	0.5	0.0	99.0	0	0.0	0. 1	91.5	00	10	7.5	91.5	11 8	2.8	0.0	85.4	11 R	17.9	0.7	69.7	0.0	1.0	11.8	87.2	0.0	2.2	23.7	74.1	0.0	1.9	4,0	94.1	0.0	1.0
RATINGS BY RMU	area (km2)	0	1517	4081	1470	68	54	; c	11717	Ċ	0 0	771	10831	C	122	886	10831	1397	337	0	10110	1307	2119	81	8247	0	122	1392	10325	C	258	2808	8773	0	229	472	11138	0	119
RA	suitability rating	~	2	т Т	4	-	• ~	1 9	4		 (2	04	-	- ົ	1 M	4	Ŧ	- ~	1 ന	4	Ŧ	- 0	I က	4	-	5	ы	4	Ŧ	2	ę	4	-	2	ຕ ·	4	~-	2
	crop	citr_lo	citr_lo	citr_lo	citr_lo	coco hi			coco_hi		coco_lo	coco	0 0 000 000	o 0000			coculo	id joofd	hzcol_m	h2rof hi	h2cof_hi		h2cof_lo	h2cof lo	h2cof_lo	rcof hi	rcof hi	rcof_hi	rcof_hi	rcof lo	rcof lo	rcof lo	rcof_lo	maiz hi	maiz hi	maiz_hi	maiz_hi	mand lo	mang_lo
	province	ENG	ENG	ENG	ENG				ENG		ENG	ENG	ENG				ENG				ENG			ENG ENG	ENG	ENG	U N U N U	ENG	ENG			ENG	ENG	ENG	ENG	ENG	ENG	UN3	ENG

.

ΥPE										
ИЕD. ENV. T % area	89.7 4.1	4.8 12.5 40.6 41.7	2.6 18.9 73.2 5.1	0.2 18.9 72.0 8.5	0.2 16.0 79.5 4.0	0.0 0.0 58.9 40.8	0.0 0.0 38.9 61.1	0.2 9.0 47.3 37.3	0.0 15.4 43.5 40.8	0.0 19.9 7.5.7 4.1
RATINGS BY MED. ENV. TYPE area % area (km2)	13552 614	723 1888 6140 6307	389 2849 11056 764	30 2858 10886 1284	30 2419 12009 600	0 0 8901 6157	0 0 5876 9233	30 1365 7141 5637	0 2331 6570 6157	0 3010 11434 614
%area	89.7 5.2	5.4 11.5 0.0 83.1	2.5 19.5 72.0 6.0	2.5 17.2 70.6 9.7	2.1 13.9 78.7 5.3	0.0 0.0 58.8 41.2	0.0 0.0 38.9 61.1	1.9 11.2 49.4 37.5	0.0 15.1 43.4 41.5	0.0 20.8 73.6 5.6
RATINGS BY RMU area (km2)	13546 791	816 1737 0 12556	382 2952 10874 901	373 2601 10668 1467	324 2103 11888 794	0 0 8879 6230	0 0 5871 9238	292 1692 7461 5664	0 2286 6551 6272	0 3150 11115 844
RA suitability rating	ю 4	← N W 4	← N M 4	- N N 4	← N M 4	- 0 M 4	← N M 4	₩N 00 4	− αα4	← 0 © 4
crop	mang_lo mang_lo	oilp_hi oilp_hi oilp_hi in_dip	oilp_lo oilp_lo oilp_lo oilp_lo	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	rubb_lo rubb_lo rubb_lo rubb_lo
province	ENB	ENB ENB ENB	ENB ENB ENB ENB	E NB E NB E NB E NB E NB E NB E NB E NB	ENB ENB ENB ENB	E NB E NB E NB E NB	enb enb enb	E NB E NB E NB E NB E NB E NB E NB E NB	enb enb enb	E NB E NB E NB E NB
ТҮРЕ	<u> </u>				$a \neq -b$	0 - 0 0	0			
BY MED. ENV. TYPE a % area 2)	39.2 52.1	0.6 0.0 99.0	0.0 1.0 8.0 91.0	0.0 1.0 8.4 90.6	0.0 2.4 43.1 53.7	0.0 4.1 33.9 61.3	0.0 4.1 75.1 14.8	0.0 1.9 38.1 59.2	0.0 1.0 3.3 95.7	0.0 1.0 30.0 62.5
RATINGS BY I area (km2)	4646 6167	68 54 0 11717	0 122 947 10770	0 122 994 10723	0 283 5107 6359	0 481 4013 7255	0 481 8894 1752	0 229 4515 7005	0 122 386 11331	0 122 3555 7394
%area	41.9 57.0	0.6 0.0 99.0	0.0 1.0 7.1 91.9	0.0 1.0 7.5 91.5	0.0 33.8 63.8	0.1 7.7 32.7 59.5	0.0 7.4 58.1 34.5	0.0 1.9 29.8 68.2	0.0 1.0 87.2	2.2 23.7 74.1
RATINGS BY RMU area (km2)	4966 6754	68 54 0 11717	0 122 839 10878	0 122 886 10831	0 283 4002 7554	15 912 3872 7040	0 872 6881 4086	0 229 3530 8080	0 122 1392 10325	0 258 2808 8773
RA1 suitability rating	64	- N W 4	− αα4	- 0 0 4	- N ω 4	⊢ αα4	← 0 0 4	- N W 4	- 0 K 4	← N 0 4
crop	mang_lo mang_lo	oilp_hi oilp_hi oilp_hi oilp_hi	oilp_lo oilp_lo oilp_lo olp_lo	pepp_lo pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	ol_ddbr ol_ddbr ol_ddbr ol_ddbr ol_ddbr
province	ENG	NG G G NG G G NG G NG G NG G NG G NG G	C C C C C C C C C C C C C C C C C C C	UC ENC ENC ENC ENC ENC ENC	C C C C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C C C C C C C	O O O O E N O E E E E	G G G G E N G E E E E	C C C C C C C C C C C C C C C C C C C

.
ГУРЕ										
MED. ENV. T % area	0.2 17.3 8.5 8.5	0.0 0.0 82.3 15.3	0.0 0.0 82.3 15.3	0.0 16.3 66.7 15.3	11.9 34.2 38.7 15.3	3.5 19.0 12.8 54.9	0.0 37.9 37.9 16.0	0.0 37.9 37.9 16.0	0.0 0.0 99.9	0.1
RATINGS BY MED. ENV. TYPE area % area (km2)	30 2619 10816 1284	0 0 17031 3162	0 0 17031 3162	0 3377 13796 3162	2453 7068 8007 3162	724 3922 2640 11367	0 7839 7849 3320	0 7839 7849 3320	29 0 0 20667	29
%area	2.7 17.5 70.1 9.7	0.0 1.9 83.0 15.1	0.0 0.5 84.4 15.1	0.2 16.4 66.9 16.4	5.0 40.3 39.6 15.1	2.7 27.1 12.8 57.4	0.2 42.4 41.5 15.9	0.7 41.9 41.5 15.9	0.0 0.2 99.8	0.0
RATINGS BY RMU area (km2)	405 2639 10598 1467	0 391 17176 3129	0 102 17465 3129	46 3403 13853 3394	1038 8336 8193 3129	554 5611 2642 11889	37 8772 8590 3297	144 8665 8590 3297	0 39 0 20657	0
R suitability rating	← N M 4	- N Ю 4	- N M 4	← () () 4	- 0 ω 4	- N Ю 4	- N M 4	- N М 4	~ 0 0 4	-
crop	vani_lo vani_lo vani_lo vani_lo	card_io card_io card_io card_io	cash_lo cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chit_lo chit_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo
province	E E NB E NB NB E NB E NB E NB E NB E NB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB
BY MED. ENV. TYPE a % area 2)	0.0 8.4 9.6	0.2 3.6 65.7 16.6	0.0 0.0 74.8 16.6	0.0 7.4 35.3 33.9	0.0 20.8 16.0	2.2 1.4 3.1 83.2	0.0 3.6 17.4 78.0	0.0 3.6 17.4 78.0	15.8 9.8 0.0 70.4	15.2
RATINGS BY A area (km2)	0 122 994 10723	18 319 5847 1481	0 0 6652 1481	0 657 3145 3014	0 1849 4305 1426	192 128 273 7398	0 320 1549 6943	0 320 1549 6943	1406 870 0 6265	1351
%area	0.0 1.0 7.5 91.5	0.5 30.1 47.3 22.1	0.0 1.7 76.1 22.1	0.0 14.1 42.2 2.2	0.0 36.3 43.1 20.6	2.2 1.9 8.9 87.0	0.0 4.1 79.1	0.0 4.1 16.8 79.1	25.0 8.7 0.0 66.2	23.4
RATINGS BY RMU area (km2)	0 122 886 10831	41 2680 4207 1969	0 154 6774 1969	0 1256 3889 3752	0 3230 3832 1835	192 172 791 7742	0 364 1496 7037	0 364 1496 7037	2226 777 0 5894	2080
Rv suitability rating	- 0 0 4	- 0 M 4	← 0 0 4	← 0 0 4	- N W 4	- 0 0 4	← N 67 4	с и м 4	₩N W 4	-
crop	vani_lo vani_lo vani_ło vani_ło	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cocu_lo cocu_lo cocu_lo cocu_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo
province	ENG ENG ENG ENG	үнү үнү үнү	YHW YHW YHW	үнү үнү үнү	үнү үнүү	үнү үнүү үнүү	үнү үнүү үнүү	үнү үнү үнү	7 YHW YHW	VHγ

RATINGS BY MED. ENV. TYPE area % area (km2)	8.7 0.0 91.1	0.0 16.3 27.2 54.8	0.0 3.0.6 15.3 15.3	0.0 8.0 70,1	0.0 0.0 82.3 15.3	8.2 14.6 23.6 49.6	0.0 38.2 48.7 10.7	0.0 37.9 37.9 16.0	0.0 16.4 71.6 10.3	0.0 0.0 42.8
ŁATINGS BY Λ area (km2)	1810 0 18857	0 3377 5620 11338	0 6330 11069 3162	0 1656 2860 14498	0 0 17031 3162	1703 3019 4878 10263	0 7900 10078 2211	0 7839 7849 3320	0 3391 14823 2127	0 0 8855
%area	0.1 8.7 91.2	0.0 16.7 26.1 57.3	0.2 30.2 54.3 15.3	0.0 15.6 10.8 73.5	0.0 0.5 84.4 15.1	12.3 18.3 18.7 50.7	0.4 43.1 46.1 10.4	0.7 41.9 41.5 15.9	0.0 16.8 68.1 15.1	0.0 0.0 42.9
RATINGS BY RMU area (km2)	29 1800 18867	0 3449 5397 11850	49 6253 11237 3157	0 3236 2240 15220	0 102 17465 3129	2551 3782 3871 10492	74 8927 9535 2160	144 8665 8590 3297	0 3475 14094 3127	0 0 8874
l suitability rating	N W 4	₩0 0 4	− αα 4	← 0 fr 4	r 0 € 4	- 0 0 4	- 0 M 4	- 0 € 4	₩ 7007	9 N -
crop	h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	ollo_ dio in_dio in_dio in_dio	al dip ol dio ol dio ol dio ol dio	pepp_lo pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi
province	WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB WNB	WNB WNB WNB
RATINGS BY MED. ENV. TYPE area % area (km2)	32.6 12.1 36.1	0.0 5.0 63.3	0.0 5.0 32.4	0.0 5.1 86.3	0.0 0.0 74.8 16.6	2.9 1.4 83.2	0.0 4.3 79.2	0.0 3.6 17.4 78.0	0.0 7.5 33.3	0.0 10.9 25.7
ATINGS BY area (km2)	2899 1080 3211	0 443 1556 5636	0 443 4924 2884	0 451 772 7674	0 0 6652 1481	257 128 208 7398	0 385 1382 7045	0 320 1549 6943	0 667 3750 2959	0 966 2289
%area	35.8 0.0 40.8	0.0 5.7 32.3 62.0	0.0 12.1 40.1 47.8	0.0 5.1 12.1 82.9	0.0 1.7 76.1 22.1	2.9 1.9 8.2 87.0	0.0 4.8 14.7 80.5	0.0 4.1 16.8 79.1	0.0 14.2 45.1 40.7	0.0 15.5 38.6
RATINGS BY RMU area (km2)	3183 0 3634	0 510 2871 5516	0 1075 3572 4250	0 451 1073 7373	0 154 6774 1969	257 172 7742 7742	0 429 1308 7160	0 364 1496 7037	0 1266 4013 3618	0 1378 3438
R suitability rating	0 M 4	← 0 0 4	г су бо 4	- 0 6 4	← 0 0 4	- N M 4	← 0 0 4	← U 0 4	- 0 0 4	т N М
crop	h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi oilp_hi h_	oilp_lo oilp_lo oilp_lo oilp_lo	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi
province	үнү МЧҮ	хну хну мих	хну үну ММУ	хну хну мих	7HW 7HW	хнм хнм	уну Унуу Ину	YHW YHW	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	үнү үнү

а	2	0		5	5ı	0	• च	. 4	- 80	0	. 4	. თ	. 00	0	о о) .	- ເ	0	. 0.	ı თ	0	C	0	2	0	0	0	7	0	a	6	ω,	-	0	~	ı۲	-
MED. ENV. ⁻ % area	54.2	0.0		10.	89.	0.0	17.4	28	48.8	C	22.4	12	54.8	Ċ	37.0	9.95	15.3	C	37	37.9	16.	C	i N	78.2	œ	0	0.0	85.7	8.	0.0	29.6	54.6	13.	0.0	52.2	25 5	
RATINGS BY MED. ENV. TYPE area % area (km2)	11209	0 0		2178	18518	0	3598	5883	10095	C	4646	2669	11338	C	7839	7878	3162	C	7839	7849	3320	C	267	7292	744	0	0	7991	744	0	2789	5092	1226	0	4874	3376	
⁄₀area	57.1	0.0	0.0	10.5	89.5	0.0	26.3	23.4	50.3	00	29.8	13.0	57.3	00	44.4	6 O V	15.3	2.0	419	41.5	15.9	0.0	10.9	72.7	16.4	0.0	0.0	83.6	16.4	5.3	17.4	58.8	18.6	8.5	44.3	20.7	
RATINGS BY RMU area ? (km2)	11822	0 (2168	18528	0	5439	4837	10420	C	6165	2681	11850	c	9190	0728	3157	144	8665	8590	3297	C	1015	6782	1532	0	0	7677	1532	494	1619	5484	1/32	792	4137	0000	
R suitability rating	4	. (.7	e	4	-		1 0	94	~	- 0	10	9 4	÷	- ~	1 6	04	-	. ~	I က	4	~	. 0	ę	4	~	2	ю	4	*	0	ю ·	4	-	2	c	
crop	pota_hi	pyre_lo	pyre_lo	pyre_lo	pyre_lo	rice hi	rice hi	rice hi	rice_hi	ruhh hi	rubb hi	rubb hi	rubb_hi		rithh lo		rubb_lo	vani lo	vani lo	vani lo	vani_lo	card lo	card lo	card_lo	card_lo	cash lo	cash_lo	cash_lo	cash_lo	chil lo	chil_lo	chil_lo	chil_lo	citr_lo	citr_lo	alt - la	
province	WNB	WNB	MNB	WNB	WNB	WNB	WNB	WNB	WNB	A/NB	WNB	WNB	WNB	ANNR	ann		WNB	A/NR	WNB	WNB	WNB	ISN	NSL	NSL	NSL	NSL											
BY MED. ENV. TYPE a % area 2)	35.5	0.0	1.1	42.6	32.5	0.0	6.4	25.7	33.7	0.0	5.0	17.5	63.3	00	0.6	55 3 7 7 7 7	32.4	00	3.6	17.4	78.0	66	20.9	55.2	16.8	0.0	1.4	81.8	16.8	0.0	3.1	69.5 20 r	5.22	0.0	10.0	10.0	
RATINGS BY M area (km2)	3160	0	629	3788	2892	C	565	200 7288	3002	c	443	1556	5636	c	500		4324 2884	C	320	1549	6943	131	1258	3323	1011	0	86	4925	1011	0	184	4184	1355	0	600		
%area	45.9	0.0	5.5	53.7	40.9	00	16.1	43.5	40.4		5.7	32.3	62.0		5 C C	101	47.8		4 1 1	16.8	79.1	66	34.5	46.3	17.0	0.0	5.4	77.6	17.0	0.0	5.1	52.9	41.9	0.0	. 12.7	• 01	
RATINGS BY RMU area (km2)	4081	0	486	4776	3635	0	1435	3867	3595	c	510	2871	5516	c	1075	2673	4250	c	364	1496	7037	131	2080	2790	1021	0	325	4676	1021	0	310	3186	2526	0	764	1001	
RA suitability rating	4	 (7	e	4	-	. ~	1 (1	94	4	- ~	1	4	-	- ~	1 6	0.4		- ~	10	4	÷	- 2	၊ က	4	+	2	£	4	-	2	ю ·	4	-	2	c	•
crop	pota_hi	pyre_lo	pyre_lo	pyre_lo	pyre_lo	rice hi	rice hi	rice hi	rice_hi	id ddin	rubb hi	rubb hi	rubb_hi	of ddin			rubb_lo	ol inev	vani lo	vani lo	vani_lo	card lo	card lo	card_lo	card_lo	cash lo	cash_lo	cash_lo	cash_lo	chil lo	chil_lo	chil_lo	chil_lo	citr_lo	citr_lo	aite la	
province	ΥHΥ	λHΛ	γHW	γHγ	γHγ	ΥНУ	λHM	VH/V	γHγ	VHV	VHV	ΛHΛ	MHΥ	VHV			λHW	VHV	VHV	γHγ	ΥHΥ	MIS	NIS	SIM	SIM	SIM	SIM										

.

RATINGS BY MED. ENV. TYPE area % area (km2)	0.0 27.5 33.3 21.7	0.0 50.4 24.8 13.3	0.0 0.0 0.0 8.7	0.0 50.4 13.3	0.0 0.0 0.0 7.89	0.0 8.0 9.0 9.0 0.0 8.0 0.0 8.0 0.0 8.0 0.0 0.0 0.0 0	0.0 26.6 14.2 59.2	0.0 0.0 85.7 8.0	0.0 26.6 14.2 59.2	0.0
&ATINGS BY M area (km2)	0 2567 3102 2027	0 4700 2312 1238	0 0 9207	0 4700 2312 1238	0 0 9207	0 821 0 8386	0 2480 1322 5527	0 0 7991 744	0 2480 1322 5527	00
%area	12.4 14.4 43.9 29.3	5.3 48.4 25.9 20.5	5.4 46.5 27.7 20.5	0.0 1.1 0.0 98.9	0.0 1.1 11.2 87.7	6.4 14.6 50.7 28.2	9.9 43.5 30.2 16.4	5.3 14.0 65.3	0.0 0.0 83.6 16.4	23.4 7.3
RATINGS BY RMU area (km2)	1153 1344 4098 2734	494 4514 2413 1908	501 4335 2585 1908	0 100 0229	0 100 1045 8184	595 1366 4734 2634	923 4054 2820 1532	492 1305 1443 6089	0 0 7797 1532	2185 685
R/ suitability rating	 064	← N M 4	← N W 4	<u>-004</u>	← N © 4	← V M 4	← 0 © 4	т N Ю 4	− 0€4	- 0
crop	coco_hi coco_hi coco_hi coco_hi	coco_lo coco_lo coco_lo	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi
province	NSL NSL NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	TSN NSR NSR	NSL NSL NSL NSL	TSN TSN TSN	NSL NSL NSL	NSL NSL
NV. TYPE rea	0.0 0.7 18.0 81.4	0.0 1.4 31.7 66.2	0.0 1.4 31.7 66.2	2.3 0.0 92.8	1.3 37.7 0.0 61.1	0.0 2.7 21.7 66.4	0.0 2.7 67.8 19.2	0.0 0.4 11.2 88.4	0.0 1.4 16.8 16.8	0.0
MED. ENV. % area	∞ - 7	о з	ê G	0	ο σ	ũ n	0 ([0]			00
RATINGS BY MED. ENV. TYPE area % area (km2)	0 40 1081 4901	0 87 1907 3987	0 87 1907 3987	136 0 5587	76 2268 0 3678	0 165 1305 4000	0 165 4085 1158	0 24 677 5321	0 86 4925 1011	0 4 0
%area	0.0 0.7 18.0 81.4	0.0 2.0 28.7 69.2	0.0 2.0 28.7 69.2	8.2 1.9 0.0 90.0	6.2 16.5 0.0 77.3	0.0 2.7 31.3 66.0	0.0 2.7 58.2 39.1	0.0 0.4 11.2 88.4	0.0 5.4 77.6 17.0	0.0 0.7
RATINGS BY RMU area (km2)	0 40 1081 4901	0 122 1730 4170	0 122 1730 4170	491 113 0 5418	373 996 0 4653	0 165 1884 3973	0 165 3504 2353	0 24 677 5321	0 325 4676 1021	40 O
RA [.] suitability rating	₩ 0 M 4	τ 0 0 4	~ იო 4	← 0 œ 4	− αα4	₩N 00 4	∽ N W 4	← U M 4	₩ N M 4	~ N
crop	coco_hi coco_hi coco_hi coco_hi	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hì h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi
province	SIM SIM SIM	SIM SIM SIM SIM	S SIM SIM SIM SIM SIM	SIM SIM SIM	NIS SIM NIS SIM	SIM SIM SIM	MIS SIM NIS SIM	MIS MIS SIM	MIS S S MIS	SIM

RATINGS BY MED. ENV. TYPE area % area (km2)	85.7 8.0	24.2 3.3 21.7 21.7	0.0 60.9 14.4	0.0 50.4 13.3	0,0 29,9 58,7 10,4	0.0 0.0 71.3 20.4	0.0 0.0 16.3 81.3	0.0 27.5 44.0 20.2	0.0 29.9 30.9 20.4	0.0 55.6 8.0 8.0
ATINGS BY M area (km2)	7991 744	2258 309 3102 2027	0 5679 2202 1348	0 4700 2312 1238	0 2789 5474 966	0 0 6648 1905	0 0 1518 7589	0 2570 4102 1881	0 2789 2880 1905	0 5186 1272 744
%area	46.1 23.1	6.6 55.2 22.6 15.6	5.3 46.5 27.8 20.5	5.8 18.0 59.1 17.2	0.0 0.0 71.8 28.2	0.0 0.0 19.4 80.6	6.4 13.9 58.2 21.5	0.6 28.5 42.7 28.2	0.6 63.2 19.8 16.4	5.3 47.8 26.5 20.5
RATINGS BY RMU area (km2)	4305 2154	619 5145 2109 1456	494 4335 2592 1908	543 1677 5509 1600	0 0 6695 2634	0 0 1814 7515	595 1299 5429 2006	53 2656 3986 2634	53 5897 1847 1532	494 4458 2469 1908
R suitability rating	ω4	- αω4	← N の 4	− αα4	- N Ю 4	− αα4	− αα 4	− αα4	г с т ст	- 0 0 4
crop	oilp_hi oilp_hi	oilp_lo oilp_lo ol_ol_ ol_ol_o	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_to	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo
province	NSL NSL	NSL NSL NSL NSL	NSN NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	NSL NSL NSL NSL	NSN NSN NSN
RATINGS BY MED. ENV. TYPE area % area (km2)	18.0 81.4	0.0 1.4 31.5 66.4	0.0 1.4 31.7 66.2	0.0 7.9 69.6 22.5	0.0 2.5 34.9	0.0 0.0 72.9 22.1	0.0 7.3 28.5 37.5	0.0 9.7 14.7 66.4	0.0 18.7 51.2 19.2	0.0 1.4 31.7 66.2
ATINGS BY n area (km2)	1081 4901	0 87 1894 4000	0 87 1907 3987	0 473 4194 1355	0 150 2003 2103	0 0 4393 1330	0 439 1714 2256	0 582 888 4000	0 1127 3082 1158	0 87 1907 3987
%area	18.0 81.4	0.0 2.0 69.5	0.0 2.0 28.7 69.2	0.0 5.7 52.3 41.9	0.0 2.5 44.2 53.4	0.0 3.1 41.5	0.0 5.2 40.9 54.0	0.0 9.7 24.4 66.0	0.0 26.4 34.5 39.1	2.0 28.7 69.2
RATINGS BY RMU area (km2)	1081 4901	0 122 1717 4183	0 122 1730 4170	0 346 3150 2526	0 150 2659 3213	0 188 3333 2501	0 312 2461 3249	0 582 1467 3973	0 1589 2080 2353	0 122 1730 4170
R/ suitability rating	Ю 4	← 0 0 4	← 0 0 4	← N M 4	← N W ¥	← N W 4	← N M 4	← N M 4	₩N 0 4	₩ ₩ ₩ ₩ ₩ ₩ ₩
crop	oilp_hi oilp_hi	oitp_lo oitp_lo oitp_lo oitp_lo	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo pyre_lo	rice_hi rice_hi rice_hi rice_hi	rubb_hi rubb_hi rubb_hi rubb_hi	rubb_lo rubb_lo rubb_lo rubb_lo	vani_lo vani_lo vani_lo vani_lo
province	SIM SIM	NIN NIN NIN NIN	MIN NIN NIN NIN NIN	NIS SIM NIS SIM	MIN NIM NIM NIM	NIN NIN NIN NIN NIN	NIN NIN NIN NIN	NIN NIN NIN NIN	NIS SIM NIS SIM	MIS SIM MIS SIM MIS SIM

RATINGS BY MED. ENV. TYPE area % area (km2)	0.1 6.3 31.5	0.4 3.1 31.5 31.5	0.5 13.3 34.6	1.8 14.4 49.1 31.4	1.6 16.7 8.7 69.5	0.8 19.2 31.0 46.0	1.3 16.9 31.3 47.7	3.4 2.8 92.4	3.2 11.3 0.8 84.1	0.5
λATINGS BY A area (km2)	434 8629 288833 144639	1923 13999 283621 144399	2435 60965 220691 158861	8073 66171 225242 143920	7135 76752 39968 318611	3722 88242 142291 210995	5770 77352 143549 218964	15578 13060 2570 423610	14576 51934 3669 385527	2407
%area	0.1 4.5 61.2 34.1	0.4 9.3 56.7 33.6	1.5 18.0 42.4 38.1	2.2 16.9 33.2	1.9 17.4 14.3 66.4	1.1 19.7 31.9 47.3	2.3 22.5 28.0 47.3	4.2 0.9 94.8	4.2 7.6 1.8 86.4	1.3
RATINGS BY RMU area (km2)	457 20839 280824 156515	1978 42424 260174 154059	7088 82421 194413 174713	10023 77607 218831 152174	8590 79979 65394 304672	5254 90411 146153 216817	10405 103051 128197 216982	19274 4085 672 434604	19036 35062 8065 396472	5986
suitability rating	- N N 4	- 0 0 4	~ 0 რ 4	- U M 4	− αα4	← N M 4	⊷`0 0 4	- 004	- N W 4	-
crop	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_lo coco_lo coco_lo coco_lo	cocn_lo cocn_lo cocn_lo cocn_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi
province	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG
RATINGS BY MED. ENV. TYPE area % area (km2)	0.0 2.1 16.6	0.0 4.6 78.5 16.6	1.0 3.6 66.7 22.8	0.0 4.6 78.5 16.6	0.0 1.0 98.9	0.0 1.1 9.2 89.7	0.0 1.1 9.2 89.7	31.3 17.8 0.0 33.6	31.3 25.3 2.5 25.1	0.0
ATINGS BY I area (km2)	0 227 8921 1823	0 509 8639 1823	111 398 7342 2511	0 509 8639 1823	5 111 4 10886	0 116 1017 9873	0 116 1017 9873	3446 1963 0 3694	3446 2784 279 2765	0
%area	0.0 11.9 71.2 16.9	0.0 16.4 66.7 16.9	1.0 9.6 54.3 35.1	0.0 17.9 65.4 16.7	0.0 1.0 0.9 8.1	0.0 1.1 89.8	0.0 1.1 9.2 89.8	32.8 5.9 0.8 60.5	32.8 30.3 2.7 34.2	0.0
RATINGS BY RMU area (km2)	0 1312 7834 1860	0 1807 7339 1860	111 1057 5973 3865	0 1968 7203 1835	5 111 98 10792	0 116 1008 9882	0 116 1008 9882	3607 650 93 6656	3607 3340 292 3767	0
R suitability rating	← N W 4	← V W 4	- 0 0 4	- 0 M 4	⊷ N ŵ 4	← N @ 4	← N W 4	- су ю 4	₩ N W 4	۲
crop	card_lo card_lo card_lo card_lo	cash_lo cash_lo cash_lo cash_lo	chil_lo chil_lo chil_lo chil_lo	citr_lo citr_lo citr_lo citr_lo	coco_hi coco_hi coco_hi coco_hi	coco_lo coco_lo coco_lo coco_lo	cocn_lo cocn_lo cocn_lo	h2cof_hi h2cof_hi h2cof_hi h2cof_hi	h2cof_lo h2cof_lo h2cof_lo h2cof_lo	rcof_hi
province	енү енү енү	ену ену ену	енү енү енү	енү енү енү	EHY EHY EHY	ЕНҮ ЕНҮ ЕНҮ	енү енү енү	ehy Cehy Cehy Cehy Cehy Cehy Cehy Cehy C	EHY EHY EHY	ЕНҮ

RATINGS BY MED, ENV. TYPE	% area	13.1 16.5 66.6	0.7 14.6 36.2 36.2	0.8 3.8 77.8	0.5 3.5 3.2 5.4 5.5 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5	7.6 15.7 18.0 55.6	1.7 18.0 32.8	0.7 18.6 31.1 47.0	1.1 15.7 47.7 32.7	0.1 3.5.0 5.9.3	0.0 0.3 23.5
ATINGS BY M	area (km2)	60004 75904 305372	3135 67083 203465 166126	3522 17599 71401 356603	2182 16058 276952 149182	34972 71855 82664 255023	7783 82572 203469 150373	3025 85288 142800 215421	5235 72125 218650 150007	242 8655 160397 272158	0 1525 107611
	%area	16.6 20.8 61.3	1.8 18.9 40.2 39.1	1.3 4.9 17.4 76.4	0.9 8.8 33.6	4.2 6.4 23.6 65.7	2.1 20.3 40.2 37.4	1.3 18.4 51.8 51.8	1.7 19.3 42.5 36.5	0.1 1.8 41.0 57.1	0.0 0.9 20.4
RATINGS BY RMU	area (km2)	75993 95483 281173	8252 86649 184545 179189	6084 22414 79631 350506	3953 40449 260174 154059	19419 29573 108219 301424	9662 93126 184246 171601	5827 84313 130766 237729	8005 88452 194993 167185	266 8330 188066 261973	0 4088 93611
	suitability rating	004	- 0 0 4	- Νω4	- ~ ~ ~ 7	- N M 4	← N © 4	τ 0 m 4	- N M 4	- N Ю 4	 α α
	crop	rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi h_dlo	oitp_to oitp_to oitp_to oitp_to	pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo
	province	ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG ALLPNG ALLPNG	ALLPNG ALLPNG ALLPNG
BY MED. ENV. TYPE	% area	1.1 28.4 54.8	0.0 1.1 33.3	2.1 1.4 1.4 95.1	0.0 4.6 78.5 16.6	0.0 0.0 98.9	0.0 1.1 9.2 89.7	0.0 1.0 89.7	1.0 3.6 66.7 22.8	2.1 1.7 58.9 37.3	0.0 0.0 71.6
RATINGS BY N	area (km2)	120 3121 6033	0 120 5490 3664	233 158 149 10466	0 509 8639 1823	0 116 4 10886	0 116 1017 9873	0 111 1022 9873	111 398 7342 2511	233 191 6479 4103	0 7885
	%area	1.9 30.6 67.5	0.0 1.9 48.1 49.9	2.1 1.5 7.5 89.0	0.0 16.4 16.3	0.0 1.1 98.1	0.0 1.1 89.8	0.0 1.0 89.8	1.0 9.6 54.5 34.9	2.1 5.3 47.7 45.0	0.0 2.6 3.6
RATINGS BY RMU	area (km2)	214 3365 7427	0 214 5295 5497	226 162 827 9791 ·	0 1807 7339 1860	0 116 98 10792	0 116 1008 9882	0 111 1013 9882	111 1057 5998 3840	226 582 5246 4952	0 281 6999
	suitability rating	N ₩ 4	г и ю 4	₩N 0 4	₩0 M 4	← N W 4	← N M 4	← N @ 4	← N M 4	- 0 m 4	с и ю
	crop	rcof_hi rcof_hi rcof_hi	rcof_lo rcof_lo rcof_lo rcof_lo	maiz_hi maiz_hi maiz_hi maiz_hi	mang_lo mang_lo mang_lo mang_lo	oilp_hi oilp_hi oilp_hi hi hi	oilp_lo oilp_lo oilp_lo oilp_lo	pepp_lo pepp_lo pepp_lo pepp_lo	pine_lo pine_lo pine_lo pine_lo	pota_hi pota_hi pota_hi pota_hi	pyre_lo pyre_lo pyre_lo
	province	енү енү	EHY EHY EHY	EHY EHY EHY	EHY EHY EHY	EHY EHY EHY	EHY EHY EHY	EHY EHY EHY	EHY EHY EHY	EHY EHY EHY	EHY EHY

RATINGS BY MED. ENV. TYPE area % area (km2)	74.1	1.8 10 3	36.6	47.3	0.1	19.4	11.9	65.2	0.1	20.9	39.1	35.4	0.8	19.2	30.8	45.9
RATINGS BY area (km2)	339935	8376 47016	167972	216733	581	89061	54646	298867	581	96049	179332	162504	3722	88107	141350	210741
%area	78.7	2.7	39.0	47.2	0.2	24.2	14.3	61.3	0.2	26.6	34.1	39.1	1.4	19.4	31.5	47.8
RATINGS BY RMU area (km2)	360936	12268	178814	216413	927	110811	65559	281338	820	122057	156404	179354	6235	88966	144287	219147
R suitability rating	4	 c	n n	4	~	2	e	4	*-	5	с С	4	ر	2	ę	4
crop	pyre_lo	rice_hi	rice hi	rice_hi	rubb hi	rubb hi	rubb_hi	rubb_hi	rubb_lo	rubb lo	rubb lo	rubb_lo	vaní lo	vanilo	vani lo	vani_lo
province	ALLPNG		ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG	ALLPNG
RATINGS BY MED. ENV. TYPE area % area (km2)	21.9	0.0	0.0 61.4	32.5	0.0	1.1	28.4	54.8	0.0	1.1	49.9	33.3	0.0	1.1	9.2	89.7
ATINGS BY I area (km2)	2415	5	034 6758	3574	0	120	3121	6033	0	120	5490	3664	0	116	1017	9873
%area	33.9	0.0	10.1 48.3	41.5	0.0	1.9	30.6	67.5	0.0	1.9	48.1	49.9	0.0	*	9.2	89.8
RATINGS BY RMU area (km2)	3726	5	5319	4572	0	214	3365	7427	0	214	5295	5497	C	116	1008	9882
R∕- suitability rating	4	- c	N 63	4		2	i m	4	, -	~ ~	1 07	4		. ~	107	9 4
crop	pyre_lo	rice_hi	rice_hi	rice_hi	id ddu	rubb hi	rubb hi	rubb_hi	nibb lo	ruhh lo	ruhh lo	rubb_lo	vani lo	vani lo	vani lo	vani_lo
province	ЕНҮ	EHY	EH <	EHY	FΗY	EHY FHY	μΥ	EHY	РНY	. ≻H⊒	×H4	EHY	ЕНХ	×H⊔		EHY

•

.

MAP 1: Major environment types, Papua New Guinea

Environment type

mangrove swamps
estuaries and coastal plains
beach ridges and plains
raised coral reefs
recent alluvial plains
relict alluvial plains
alluvial flood plains
swamps
alluvial fans
volcanic plains and fans
volcanic plateaux and cones
steeplands - karst
hills
mountains

MAP 2: Suitability of environment subtypes for low input Arabica Coffee production

Harding model

S

2

6

high
moderate
marginal
not suitable

MAP 3: Suitability of environment subtypes for high input Arabica Coffee production

13

Harding model

high
moderate
marginal
not suitable

MAP 4: Suitability of PNGRIS RMU's for low input Arabica Coffee production Harding model

MAP 5: Suitability of PNGRIS RMU's for high input Arabica Coffee production Harding model

5

high
moderate
marginal
not suitable

3

high
moderate
marginal
not suitable

Q

S

R

5

PNGRIS PUBLICATIONS (ISSN 1320-5765)

Agricultural Land Use of Papua New Guinea: [map with explanatory notes]. Scale 1:1 000 000. PNGRIS Publication No. 1. ISBN 0 642 19604 4

Forest Resources of Papua New Guinea: [map with explanatory notes]. Scale 1:1 000 000. PNGRIS Publication No. 2. ISBN 0 642 19603 6

Land Resource Survey, Upper Ramu Catchment, Papua New Guinea. PNGRIS Publication No. 3. ISBN 0 642 19605 2

Land Suitability for Selected Crops in Papua New Guinea. PNGRIS Publication No. 8. ISBN 0 642 19609 5

Rainfall Erosivity in Papua New Guinea. PNGRIS Publication No. 9. ISBN 0 642 19607 9

RELATED PUBLICATIONS

Geomorphology of Papua New Guinea: [map with explanatory notes]. Scale 1:1 000 000. Land Research Series No. 33. (CSIRO Division of Land Use Research). ISBN 0 643 00092 5

Vegetation of Papua New Guinea: [map with explanatory notes]. Scale 1:1 000 000. Land Research Series No. 35. (CSIRO Division of Land Use Research). ISBN 0 643 00138 7

Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Natural Resource Series No. 6 (CSIRO Division of Water and Land Resources).

> ISSN 1320-5765 ISBN 0 642 19609 5