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Abstract: Ocean acidification and warming are co-occurring stressors, yet their effects on early life
stages of large pelagic fishes are not well known. Here, we determined the effects of elevated CO2

and temperature at levels projected for the end of the century on activity levels, boldness, and
metabolic traits (i.e., oxygen uptake rates) in larval kingfish (Seriola lalandi), a large pelagic fish with a
circumglobal distribution. We also examined correlations between these behavioral and physiological
traits measured under different treatments. Kingfish were reared from the egg stage to 25 days
post-hatch in a full factorial design of ambient and elevated CO2 (~500 µatm and ~1000 µatm) and
temperature (21 ◦C and 25 ◦C). Activity levels were higher in fish from the elevated temperature
treatment compared with fish reared under ambient temperature. However, elevated CO2 did not
affect activity, and boldness was not affected by either elevated CO2 or temperature. Both elevated
CO2 and temperature resulted in increased resting oxygen uptake rates compared to fish reared
under ambient conditions, but neither affected maximum oxygen uptake rates nor aerobic scope.
Resting oxygen uptake rates and boldness were negatively correlated under ambient temperature,
but positively correlated under elevated temperature. Maximum oxygen uptake rates and boldness
were also negatively correlated under ambient temperature. These findings suggest that elevated
temperature has a greater impact on behavioral and physiological traits of larval kingfish than
elevated CO2. However, elevated CO2 exposure did increase resting oxygen uptake rates and interact
with temperature in complex ways. Our results provide novel behavioral and physiological data on
the responses of the larval stage of a large pelagic fish to ocean acidification and warming conditions,
demonstrate correlations between these traits, and suggest that these correlations could influence the
direction and pace of adaptation to global climate change.
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1. Introduction

The oceans are becoming more acidic due to increased uptake of anthropogenic carbon dioxide
from the atmosphere [1]. The dissolution of additional CO2 into oceanic surface waters causes a
decrease in oceanic pH through a process known as ocean acidification [2]. There is now an extensive
body of literature assessing biological responses to ocean acidification across a wide range of marine
species [3–5]. These single-stressor studies provide useful indications of large-scale trends in response
to acidification, as well as the mechanisms underlying these responses. However, marine organisms
are subject to multiple co-occurring stressors, which might interact in diverse ways. Ocean warming
is an ecologically-relevant stressor that co-occurs with acidification [6]; yet, predicting the combined
impacts of ocean acidification and warming is not straightforward, as elevated CO2 and temperature
have been found to interact both synergistically and antagonistically on marine organisms [7,8].

Previous studies have investigated the effects of ocean acidification on marine fishes, finding
effects on metabolic rate, behavioral performance, reproductive output, otolith growth, and sensory
responses in some species, but not others [9–12]. More recently, studies have begun to investigate the
interacting effects of ocean acidification and warming on marine fishes, finding they may mitigate,
reverse, or enhance the effects of elevated CO2. For instance, Domenici et al. [13] found that elevated
CO2 and temperature have different and interacting effects on behavioral lateralization in reef fishes,
whereas Munday et al. [14] found that elevated CO2 and temperature have additive effects on metabolic
rates in two species of cardinalfishes. Other studies point towards temperature having a greater
overall effect on ontogenetic development, swimming ability [15], and the outcome of predator-prey
interactions [16] compared with elevated CO2. Therefore, it is necessary to consider the interacting
effect of warming to properly understand the effects of ocean acidification on fishes and predict
outcomes for the future.

Among the existing experimental research on the effects of ocean acidification and warming
on marine fishes, large pelagic fishes have been relatively understudied. This represents a critical
knowledge gap, as large pelagic fishes are both ecologically and economically important. As abundant
top predators, they can impact the structure and functioning of the marine ecosystem, and have strong
top-down influences on marine food webs [17,18]. They are also a critical food source for millions of
people in coastal regions worldwide, and constitute a large proportion of wild-caught fisheries [19].
Furthermore, large pelagic fishes are hypothesized to be more susceptible to ocean acidification and
warming due to the relatively stable environments they experience in open waters [20,21] when
compared to the highly fluctuating temperature and pH conditions of coastal and shallow water
habitats [22,23]. Thus, their absence from the literature represents a critical avenue for climate change
research, and motivated our study.

We focused on the larval stages of a large pelagic fish. The larval stage is one of the most
vulnerable, yet critically important, stages in the development of marine fishes. Larval fishes are
subject to high mortality rates due in part to predation, as well as environmental effects on growth [24].
The dynamics of the larval phase can influence patterns of population replenishment and connectivity
in adult populations [25,26]. Additionally, larval fishes are presumed to be more vulnerable to changes
in temperature and pH than adults, possibly due to their larger surface area-to-volume ratio, which
makes them more susceptible to environment perturbations [27,28]. Therefore, understanding how
elevated CO2 and temperature affect larval pelagic fishes could have broader implications for how
adult populations might be affected by climate change.

Here, we tested the effects of elevated CO2 and temperature on key behavioral and physiological
traits during the larval stage in yellowtail kingfish, Seriola lalandi, from New Zealand. We used a
cross-factored experiment that comprised current-day ambient CO2 levels (~500 µatm) and average
summer temperature for the study location (21 ◦C), crossed with elevated CO2 (~1000 µatm) and
temperature (25 ◦C) based on projections for the open ocean by the end of the century under
RCP 8.5 [1,29]. The specific traits we focused on were routine activity, boldness, and metabolic
performance, and we also examined correlations between these traits.
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Routine activity is a commonly examined behavioral trait in ocean acidification studies of
larval fishes. Ecologically, activity levels are relevant because increased activity has been shown
to increase feeding and growth rates in fishes and other animals, but decrease survivorship due to
higher incidences of predation [30–32]. In previous studies, the routine activity of large pelagic fishes
has been mostly unaffected by elevated CO2 levels ranging from 800 to 2100 µatm [33–36]. However,
one species, mahi mahi Coryphaena hippurus, did exhibit a decrease in swimming duration upon
exposure to 1600 µatm CO2 [37], and a decrease in maximum swimming velocity upon exposure to
1460 µatm CO2 [34]. By contrast, temperature is well known to increase activity in marine fishes [38,39].
The mechanism for this relationship is not well known, though it has been suggested that temperature
influences activity indirectly through its effect on metabolic rate [40,41].

We also measured boldness, or the propensity to take risks, which is another commonly measured
behavioral trait in fishes [42–44]. As with increased activity, increased boldness in fishes has been
linked to decreased survivorship through higher rates of predation [30,45], and also higher likelihood of
being captured by fishing gear [46]. Boldness has not been specifically studied with respect to CO2 effects
on early life stages of large pelagic fishes, but other ocean acidification studies on marine fishes have found
boldness to either increase [45] or decrease [47] under elevated CO2. Temperature has also been shown to
increase boldness in marine fishes [38,48]. As with activity, the relationship between temperature and
boldness has been suggested to be driven by the direct impact of temperature on metabolic rate [38,49].

Our physiological trait of interest was metabolic performance, which we approximated by
measuring maximal and resting oxygen uptake rates, and calculating aerobic scope, or the difference
between these two values. Metabolic traits reveal the energetic requirements of organisms, and
are therefore assumed to underpin a range of fitness-related traits [50]. For instance, maximal and
resting oxygen uptake rates have been correlated with swimming performance and foraging success in
fishes [51,52]. Studies to date show mixed effects of elevated CO2 on maximum and resting oxygen
uptake rates in marine fishes [11,53,54]. While few studies have examined the effects of elevated CO2

on metabolic performance in larval pelagic fishes, Pimentel et al. [37] did find a reduction in oxygen
uptake rates of mahi mahi upon exposure to 1600 µatm CO2. By comparison, temperature has been
well established to affect metabolic traits in marine fishes through its effect on rates of biochemical
reactions [55]. Furthermore, a recent meta-analysis [11] indicates that elevated temperature generally
has a greater effect than elevated CO2 on metabolic traits of marine fishes.

In addition to documenting mean trends across activity, boldness, and metabolic performance, we
also tracked individual fish through all assays to determine whether correlations exist between traits at the
individual level. Historically, individual variation has often been treated as noise around the population
mean [56]. However, there has been a recent surge of interest in studying individual variation in both
behavioral and physiological traits [50,57], and whether these traits are correlated [40,51,56]. It has been
proposed that environmental stressors can alter the relationship between behavioral and physiological
traits, either revealing or masking these relationships [58]. Importantly, correlations between traits could
have implications for the capacity to adapt to environmental change. For instance, if the behavioral
and physiological traits of interest are heritable, then correlations between them could either increase
or decrease the rate of adaptive evolution, depending on whether the traits are positively or negatively
correlated with respect to the fitness landscape [59]. If traits are positively correlated, then selection on
one trait will enhance the other, accelerating the rate of adaptation, and vice versa. Thus, examining
correlations between behavioral and physiological traits, as well as how those correlations shift under
different environmental conditions, can reveal the evolutionary implications of climate change.

2. Materials and Methods

2.1. Study Species, Broodstock, Egg and Larval Maintenance

We chose the yellowtail kingfish, Seriola lalandi, because it is one of the few species of large
pelagic fishes that can be reliably reared in captivity [60]. The yellowtail kingfish has a circumglobal
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distribution in subtropical and temperate waters [61]. Kingfish inhabit open coastal waters, where
they form large shoals around deep reefs, pinnacles, or rocky outcrops [62]. Adults can reach up to
1.93 m in length and weigh over 58 kg [63]. Kingfish are an important recreational and commercial
fishery in subtropical countries such as Australia, New Zealand, Peru, Chile, USA, South Africa, and
Japan, and have been a target for aquaculture in some of these countries as well [61].

This study was conducted at the National Institute of Water and Atmospheric Research (NIWA)
Northland Marine Research Centre in Ruakaka, New Zealand. Wild-caught, adult yellowtail kingfish
were maintained as broodstock in six 20 m3 circular tanks (Figure 1). Each tank contained up to six
fish, with approximately equal sex ratios in each tank. The fish had been domesticated at NIWA for
up to nine years. Filtered (10 µm) seawater was supplied to the tanks at 130 L min−1, and each tank
was exposed to an ambient photoperiod and ambient ocean temperatures (maximal seasonal range of
13–24 ◦C). The broodstock were fed a mixture of pilchard (Sardinops sagax) and squid (Notodarus spp.).
For further details, all broodstock, egg, and larval maintenance protocols followed Watson et al. [15].
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proportions from each tank and mixed together. They were rinsed with oxygenated seawater for 5 
min, disinfected with Tosylchloramide (chloramine-T) at 50 ppm for 15 min, then rinsed a second 
time in seawater. The eggs were then transferred to 24 conical 400-L incubation tanks at 12:45 h, with 
an average concentration of 101,778 ± 9860 (SD) eggs per tank. 

The incubation tanks were exposed to a 14:10 light to dark photoperiod. Flow-through seawater 
was supplied at 4 L min−1, and the tanks were aerated with a weighted 4 mm airline. Tanks were at 
ambient ocean temperature (18.2 °C) at stocking, after which the heating was turned on and tank 
temperatures rose to either 21 or 25 °C overnight, which resulted in hatching after three or two days, 
respectively. At 1 day post-hatch (dph), larvae were transferred from incubator tanks to 24 
reciprocal 1500 L circular grow-out tanks (black interior, sloped bottoms) at an average 
concentration of 44,227 ± 2152 (SD) larvae per tank. Tanks were supplied with seawater at a flow rate 
of 3 L min−1 and, as with incubation tanks, exposed to a 14:10 light to dark photoperiod and aerated 
with a weighted 4 mm airline. Larvae were fed with enriched rotifers up to 4 times per day. 

2.2. Carbonate Chemistry 

Seawater was pumped continuously from the ocean, sand and particle (5 µm) filtered, and UV 
(150 mW cm−2) sterilized before reaching large header tanks. Inside the header tanks, foam 
fractionators removed any additional organic matter, and oxygen diffusers ensured a minimum 
dissolved oxygen concentration of 100% saturation. Water from the header tanks was then 
gravity-fed into eight 100 L sumps. These sumps were treated to create a fully crossed 2 × 2 

Figure 1. A schematic diagram of the broodstock, egg, and larval maintenance of yellowtail kingfish
prior to behavioral and physiological testing. Illustration by Erin Walsh.

The offspring used for this experiment were collected from a spawning event on the night of
23 January 2017. Spawning occurred within the last 2 h of daylight across four broodstock tanks,
containing a total of nine females, nine males, and one fish of unknown sex. Eggs were collected from
all four tanks to maximize genetic variation. Ambient water temperatures ranged from 19–20 ◦C in the
week prior to spawning, but dropped to 18.2 ◦C on the night of spawning. Eggs were collected on
the morning of 24 January 2017, approximately 12 h after fertilization using an external egg collector
as described by Moran et al. [64]. Eggs were collected in approximately equal proportions from each
tank and mixed together. They were rinsed with oxygenated seawater for 5 min, disinfected with
Tosylchloramide (chloramine-T) at 50 ppm for 15 min, then rinsed a second time in seawater. The eggs
were then transferred to 24 conical 400-L incubation tanks at 12:45 h, with an average concentration of
101,778 ± 9860 (SD) eggs per tank.

The incubation tanks were exposed to a 14:10 light to dark photoperiod. Flow-through seawater
was supplied at 4 L min−1, and the tanks were aerated with a weighted 4 mm airline. Tanks were
at ambient ocean temperature (18.2 ◦C) at stocking, after which the heating was turned on and
tank temperatures rose to either 21 or 25 ◦C overnight, which resulted in hatching after three or
two days, respectively. At 1 day post-hatch (dph), larvae were transferred from incubator tanks to
24 reciprocal 1500 L circular grow-out tanks (black interior, sloped bottoms) at an average concentration
of 44,227 ± 2152 (SD) larvae per tank. Tanks were supplied with seawater at a flow rate of 3 L min−1

and, as with incubation tanks, exposed to a 14:10 light to dark photoperiod and aerated with a weighted
4 mm airline. Larvae were fed with enriched rotifers up to 4 times per day.

2.2. Carbonate Chemistry

Seawater was pumped continuously from the ocean, sand and particle (5 µm) filtered, and
UV (150 mW cm−2) sterilized before reaching large header tanks. Inside the header tanks, foam
fractionators removed any additional organic matter, and oxygen diffusers ensured a minimum
dissolved oxygen concentration of 100% saturation. Water from the header tanks was then gravity-fed
into eight 100 L sumps. These sumps were treated to create a fully crossed 2 × 2 experimental design
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of CO2 and temperature, with CO2 at either ambient (~500 µatm) or elevated levels (~1000 µatm), and
temperature at either an ambient (21 ◦C) or elevated (25 ◦C) level. There were two replicate sumps
for each treatment, totaling eight sumps. Each sump supplied water to three rearing tanks, meaning
that there were six replicate experimental tanks for each CO2 × temperature treatment throughout the
duration of the experiment.

Each sump contained two aquarium pumps; one (HX-6540, Hailea, Guangdong, China) delivered
water from the sump to the experimental rearing tanks, while the second (Maxi 103, Aqua One,
Ingleburn, NSW, Australia) ensured even mixing of the water within the sump. The second pump was
also the site of CO2 dosing for the elevated CO2 treatments. A pH computer (Aqua Medic, Bissendorf,
Germany) and needle valve were used to slowly dose CO2 into the pump inlet, which ensured a slow,
steady stream of CO2 that was immediately mixed by the pump impeller.

The temperature and pHtotal of each rearing tank were measured daily using a pH electrode
(SG8 SevenGo Pro, Mettler Toledo, Switzerland). The pH electrode was calibrated using Tris buffers
obtained from A.G. Dickson (Scripps Institution of Oceanography, La Jolla, CA, USA, batch number 26).
Water samples for carbonate chemistry analysis were collected from all rearing tanks at the start, middle,
and end of the experiment, and immediately poisoned with a saturated solution of mercuric chloride at
0.05% of the sample volume. The samples were later analyzed for total alkalinity (TA) at the University
of Otago Research Centre for Oceanography (Dunedin, New Zealand). See Watson et al. [15] for
full details of the water sample analysis. Salinity was measured for each sample bottle using a YSI
Pro30 salinity probe. Temperatures reported by the pH electrode were cross-checked each day with
a calibrated 3 decimal point digital thermometer (FSH15-077-8 Digital thermometer, Fisherbrand™
Traceable™ Digital Thermometer, Thermo Fisher Scientific, Waltham, MA, USA).

Carbonate chemistry parameters in each tank were calculated in CO2SYS using the measured
values of pHtotal, salinity, temperature, and TA and the constants K1 and K2 from Mehrbach et al. [65],
refit by Dickson & Millero [66] and Dickson for KHSO4 [67]. Seawater carbonate chemistry parameters
are displayed in Table 1.

Table 1. Experimental water chemistry. Mean (± S.D.) temperature, salinity, pHtotal, total alkalinity,
and pCO2 in experiments with yellowtail kingfish (Seriola lalandi) eggs and larvae. Water chemistry
in broodstock tanks was measured in the week prior to spawning. Temperature, salinity, pHtotal, and
total alkalinity were measured directly, while pCO2 was estimated from these parameters in CO2SYS.

CO2
Treatment

Temperature
Treatment

Temperature
(◦C) Salinity pHtotal

Total Alkalinity
(µmol.kg−1 SW)

pCO2
(µatm)

Broodstock–
ambient

Broodstock–
ambient 19.4 (0.4) 35.6 (0.1) 7.906 (0.024) 2329.6 (6.1) 589.4 (38.0)

Control 21 ◦C 21.1 (0.1) 35.6 (0.1) 7.995 (0.025) 2318.8 (7.2) 462.0 (42.8)
Control 25 ◦C 24.8 (0.4) 35.6 (0.1) 7.938 (0.011) 2319.9 (7.7) 538.3 (15.6)
Elevated 21 ◦C 21.1 (0.1) 35.6 (0.2) 7.718 (0.028) 2319.0 (3.8) 959.8 (57.3)
Elevated 25 ◦C 24.9 (0.4) 35.6 (0.1) 7.700 (0.012) 2320.0 (6.2) 1010.6 (30.4)

2.3. Experimental Design

Behavioral and metabolic traits were assessed from 18–24 dph during daylight hours only
(08:00–19:00). Each morning, the fish to be tested that day were sampled randomly from the
experimental rearing tanks. The fish were placed individually into labeled sample jars (10 cm diameter,
10 cm height) maintained at the fish’s respective treatment conditions. A total of 137 fish were used in
the study. Fish were only tested in a single assay, except for 45 individuals that were tracked through
both the behavioral and physiological assays to examine correlations between traits. All experiments
were conducted in each fish’s respective treatment water. After the final assay, fish were euthanized
using an overdose of clove oil. Any excess water was removed by blotting with a paper towel, and
the fish’s mass (0.028 ± 0.008 g; mean ± SD) and standard length (9.74 ± 1.07 mm; mean ± SD)
were recorded. Research was carried out under approval of the James Cook University animal ethics
committee (permit: A2357) and according to the university’s animal ethics guidelines.
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2.4. Behavioral Assay

Routine activity and boldness were determined using an open field test [44,68]. The test arena
consisted of a round, white plastic bucket (19 cm diameter, 7 cm height) placed inside a white plastic
bin (52 cm length, 32 cm width, 34 cm height), which was opaque to minimize visual disturbance for
the fish, but allowed light through for filming. A sheet of white corflute was fitted to the top of the
plastic bin, with a small circular hole cut into its center, where a video camera (HC-V160, Panasonic
Australia, Macquarie Park, NSW, Australia) was placed. To begin a trial, a fish was placed into the
center of the arena by gently transferring it with a beaker to minimize stress. The lid was immediately
fit to the plastic bin, the camera was turned on, and the fish was filmed for 17 min. At the end of a trial,
the fish was removed from the test arena with a beaker, returned to its respective treatment water, and
the test arena was rinsed with seawater.

All videos were analyzed blind to treatment using Lolitrack software (v4.1.0 Loligo Systems, Tjele,
Denmark), which tracked and quantified the movements of the fish. The first and last minute of each
video were discarded to allow for the researcher to enter and exit the arena area. Before each video
analysis, a circular arena was drawn within the test arena, with the same central point, but which
was 13 cm in diameter, or approximately three body lengths away from the edges of the test arena.
This “inner zone” was used to quantify boldness. The open field test has been commonly used in
fishes to determine boldness based on the idea that a novel, open field is considered dangerous, and
that venturing into the inner zone represents boldness, or the willingness to undertake risk [44,68].
Therefore, we quantified boldness as time spent in the inner zone. The parameters quantified by the
software were: total distance moved (cm), average swimming velocity (cm s−1), time active (defined
as time spent moving) (s), and time spent in the inner zone (s). Between 29 and 38 individuals were
tested per treatment.

2.5. Physiological Assay

Oxygen uptake rates (
.

MO2) of fish were determined using intermittent flow respirometry, based
on standard respirometry methods [69,70]. Fish were starved for 20 h prior to testing to ensure a
post-absorptive state [71]. To measure maximal oxygen uptake (

.
MO2Max), fish were chased (3 min) in

a circular container (20 cm diameter, 9 cm height) and then exposed to air (1 min). This chase protocol
was determined in pilot trials to be sufficient for all fish to reach exhaustion. Immediately following
the chase and air exposure, fish were gently placed into individual darkened glass respirometry
chambers (15 mL total volume including tubing) submerged in a water bath containing the fish’s
respective treatment water. The water bath received a continuous flow of treatment water to ensure
the temperature and CO2 of the water remained constant. Fish remained in chambers while recovering
back to their resting oxygen uptake rates (

.
MO2Rest) over four hours. Although adult fish typically

remain in chambers for 24 h [72], larvae and small juvenile fish recover much more quickly from
exhaustive exercise, and are commonly measured for only 2–3 h to minimize stress and the risk of
starvation [73–76]. Flush pumps supplied the chambers with clean, well-oxygenated water for 2 min
every 8 min, ensuring that O2 levels within chambers did not fall below 80% air saturation. This flush
pattern was controlled using a custom-built timer which turned power to the flush pumps on and off
via a programmed timing sequence. The temperature-compensated oxygen concentration (mg L−1) of
the water in each chamber was continuously recorded (2 s−1) using oxygen-sensitive REDFLASH dye
on contactless spots (2 mm) adhered to a glass tube in line with the chamber, and linked to a Firesting
Optical Oxygen Meter (Pyro Science e. K., Aachen, Germany) with 2 m fiber-optic cables. Between 11
and 14 individuals were tested per treatment.

Oxygen uptake rates were calculated using linear least squares regression in LabChart version 7.2.5
(ADInstruments, Colorado Springs, CO, USA). Background microbial respiration was subtracted from
total chamber respiration to determine the oxygen uptake rate of the fish, as per Rummer et al. [70].
The

.
MO2Max was taken to be the highest oxygen uptake rate (over 2 min intervals) and usually occurred
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during the first measurement cycle. The
.

MO2Rest was estimated as the average of the lowest 10% of
values, excluding outliers above or below 2 SD. Aerobic scope (AS) was calculated as the difference
between

.
MO2Max and

.
MO2Rest.

2.6. Statistical Analyses

All analyses were conducted using R version 3.1.3 [77]. Linear mixed-effects models (LME, “nlme”
package in R) were used to determine the effect of CO2 and temperature treatment on behavioral
and metabolic traits. Total distance traveled (in body lengths) and velocity (in body lengths per
second) were standardized by body length to facilitate comparisons between treatments where fish
were differently sized. For these dependent variables, the CO2 and temperature treatments were fixed
effects, with time of day as a covariate, allowing for interactions between CO2 treatment, temperature
treatment, and time of day. Time of day was mean-centered to help with the interpretation of model
intercepts. For time spent active and time spent in the inner zone, similar linear mixed effects models
were used, with the addition of mean-centered mass as a covariate, since these measures were not
standardized by fish length, but distance traveled and velocity were. Time spent in the inner zone
was square-root transformed to achieve normal distribution errors. For aerobic scope, maximum
oxygen uptake, and resting oxygen uptake, CO2 and temperature treatments and mean-centered
mass were fixed effects. For all linear mixed effect models, tank was included as a random effect.
Assumptions of normality and homogeneity of residuals were visually assessed with Q-Q plots and
frequency distributions. When the variance of the model residuals increased as the fitted values
increased, a power variance function was used to allow for heteroscedasticity. Parameters were
estimated using restricted maximum-likelihood. Covariates and interactions between the fixed factor
and covariates were dropped when not significant for model simplification and fit. Correlations
between behavioral and physiological traits were calculated using linear models (LM), with mass as a
covariate, and separate analyses were undertaken between ambient vs. elevated CO2 treatments and
ambient vs. elevated temperature treatments. The dataset generated and analyzed during the current
study is available from the corresponding author on request or via the Tropical Research Data Hub
(doi:10.4225/28/5ae15a2d946b4).

3. Results

3.1. Behavior

Elevated temperature significantly affected the distance traveled in body lengths (t103 = 6.08,
p < 0.0001; Figure 2A). Fish maintained at 25 ◦C swam 138% further on average than fish maintained at
21 ◦C, whereas CO2 treatment did not affect the distance traveled (t103 = 0.41, p = 0.68; Figure 2A), and
there was no significant interaction between CO2 and temperature treatments. Elevated temperature
also significantly affected the average velocity of fish in body lengths per second (t103 = 4.47, p < 0.0001;
Figure 2B), with fish maintained at 25 ◦C swimming 59% faster than fish maintained at 21 ◦C. Again,
CO2 treatment did not affect average velocity (t103 = −0.34, p = 0.74; Figure 2B), and there was no
interaction between CO2 and temperature. Elevated temperature also affected the time that fish spent
active (t103 = 5.95, p < 0.0001; Figure 2C), but CO2 had no effect (t103 = 0.59, p = 0.56; Figure 2C), and
there was no interaction between CO2 and temperature. Fish maintained at 25 ◦C were, on average,
55% more active than fish maintained at 21 ◦C. There were no significant main effects of either CO2

(t103 = −1.13, p = 0.26; Figure 3) or temperature (t103 = −0.88, p = 0.38; Figure 3) on time spent in the
inner zone.
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3.2. Physiology

Both elevated CO2 (t18 = 2.59, p = 0.02; Figure 4A) and temperature (t18 = 2.15, p = 0.04; Figure 4A)
significantly affected

.
MO2Rest. Fish maintained under elevated CO2 exhibited a 21% increase in

.
MO2Rest compared to fish maintained under ambient CO2 levels, and those maintained at 25 ◦C
showed a 20% increase in

.
MO2Rest compared to fish maintained at 21 ◦C. There was a trend toward

a negative interaction between CO2 and temperature which was marginally significant (t18 = −2.00,
p = 0.06; Figure 4A).

Neither elevated CO2 nor temperature significantly affected
.

MO2Max (t18 = 0.83, p = 0.42 and
t18 = 0.15, p = 0.88, respectively; Figure 4A), and there was no interaction between treatments.
Aerobic scope was significantly affected by fish mass (t24 = −3.46, p = 0.002; Figure 4B), but not
elevated CO2 or temperature (t18 = −0.48, p = 0.64 and t18 = −0.27, p = 0.79, respectively; Figure 4B),
and there was no interaction between treatments.
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3.3. Correlations

There were a number of correlations between behavioral and physiological traits. When comparing
across temperature treatments, there was a significant positive relationship between

.
MO2Rest and time

spent in the inner zone (i.e., boldness) in fish maintained at 25 ◦C (LM t = 2.99, slope estimate = 2.22,
p = 0.009; Figure 5A). By contrast, there was a negative relationship between

.
MO2Rest and boldness

in fish maintained at 21 ◦C (LM t = −2.95, slope estimate = −0.80, p = 0.008; Figure 5A). Within each
temperature treatment, these trends were consistent across CO2 treatments (ANOVAs of LMs, CO2

treatment × Time spent in inner zone interaction, p > 0.05). Fish maintained at 21 ◦C also exhibited a
significant negative relationship between boldness and

.
MO2Max (LM t = −2.61, slope estimate = −1.50,

p = 0.02; Figure 5B), but this relationship was absent in fish maintained at 25 ◦C. These trends were
also consistent across CO2 treatments (ANOVAs of LMs, CO2 treatment × Time spent in inner zone
interaction, p > 0.05).
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Figure 5. The relationship between (A) time spent in the inner zone of the arena and
.

MO2Rest and
(B) time spent in the inner zone of the arena and

.
MO2Max in larval yellowtail kingfish. Panels represent

ambient (21 ◦C) and elevated (25 ◦C) temperature treatments. Trend lines are shown as derived from
linear models, and are only displayed for statistically significant relationships.
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4. Discussion

Our results indicate that, while elevated temperature dominated effects on behavioral traits,
elevated CO2 and temperature had an equal effect on metabolic traits in larval yellowtail kingfish.
Fish maintained under elevated temperature traveled further, had a higher mean velocity, and spent
more time active than fish maintained under ambient temperature. By contrast, elevated CO2 had no
effect on these traits. Both elevated CO2 and temperature increased resting oxygen consumption rates.
There was also evidence of an antagonistic interaction, as the combined elevated CO2 and temperature
treatment did not have a significantly different

.
MO2Rest from the single-stressor treatments. Boldness,

aerobic scope, and
.

MO2Max were not affected by elevated CO2 or temperature. Finally, we found that
temperature influenced the relationship between boldness and

.
MO2Rest/

.
MO2Max, which is important

because it could influence natural selection and consequently adaptive potential to ocean acidification
and warming.

Kingfish reared under elevated temperature exhibited higher activity levels than individuals
reared under ambient temperature. This aligns well with other studies that have observed increased
activity at higher temperature (e.g., [36,37]). It has been proposed that variation in activity level may be
attributed to differences in

.
MO2Rest, because fish with higher

.
MO2Rest have higher energetic demands,

causing them to become more active and seek food [40]. Alternatively, fish with higher activity levels
might develop a higher

.
MO2Rest to cope with the increased energetic demands of a highly active

lifestyle [41]. Regardless of the mechanism, our results support a link between
.

MO2Rest and activity.
Increased activity under elevated temperature could have either positive or negative effects on

larval kingfish. Higher activity rates are likely to increase foraging success [78], which could help fish
to meet the high energetic demands of their elevated

.
MO2Rest. Conversely, increased activity could

also make fish more vulnerable to predation, particularly in the larval and early juvenile stages [30–32].
Mortality in the early life stages of pelagic fishes can have significant effects on recruitment patterns in
adult populations [24]. The relative effects of increased foraging success versus increased mortality
due to predation will thus largely depend on the abundance and distribution of both predators and
prey, which are themselves subject to temperature-induced changes [79].

In contrast to temperature, elevated CO2 levels did not affect any of the activity metrics. The effect
of elevated CO2 on activity of larval pelagic fishes appears to be highly variable, with some species
showing decreased activity [34,37] and others experiencing no change in activity [33–36]. Coral reef
fishes have shown similar variability, with both increases [45] and no changes [80,81] in activity under
elevated CO2. These results suggest some degree of inter-species variation in response to elevated CO2,
although the variation in results could also be attributed to different experimental methodologies and
CO2 levels. Nevertheless, our results indicate that larval kingfish will likely not experience changes in
activity levels due to elevated CO2 under relevant ocean acidification conditions.

Boldness of larval yellowtail kingfish, as measured by time spent in the inner zone of the test
arena, did not vary regardless of CO2 or temperature treatment. Boldness has not been previously
assessed for the larval stages of large pelagic fishes, but studies on other fish species have found both
an increase [45] and a decrease [47] in boldness under elevated CO2. As with activity levels, it appears
that larval kingfish are resilient to changes in boldness due to elevated CO2. Boldness has been linked
with elevated temperature previously [38,48], but notably, prior studies have predominantly examined
temperature changes on time-scales of hours to days. We exposed kingfish to elevated temperature
from the egg stage to 18–24 dph, which may have conferred some benefits in mitigating the effects
of elevated temperature. Alternatively, we may not have found any differences in boldness between
treatments because the kingfish were well fed. Previous work has shown that fish adopt more risky
behaviors when food is scarce [30], and that elevated temperature can exacerbate risky behaviors
under low food conditions [48]. It is likely that food will be less abundant in nature; therefore, future
work could cross food availability with long-term temperature exposure to tease out the relationship
between boldness and temperature.
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A significant increase in
.

MO2Rest was observed in fish maintained at both elevated CO2 and
temperature. The positive correlation between temperature and

.
MO2Rest in marine fishes has been well

established due to the influence of temperature on biochemical reactions, and our results are consistent
with these findings [24,27]. The effects of CO2 on

.
MO2Rest have been more varied; recent meta-analyses

indicate that, on average, elevated CO2 has no effect on
.

MO2Rest [11,54], although both increases [14,82]
and decreases in

.
MO2Rest [37] under elevated CO2 have been observed. This inter-species variability

suggests that the effect of CO2 on metabolism is species-specific, and underscores the importance of
studying the responses of many species of different lifestyles to elevated CO2 [54].

The observed increase in
.

MO2Rest at both elevated CO2 and temperature is indicative of a higher
cost of living under end-of-century climatic conditions. With respect to elevated CO2, this increase
in

.
MO2Rest suggests an increased metabolic cost of acid-base regulation. Importantly, oceanic pH is

relatively uniform in comparison with the strong latitudinal gradient of temperature, indicating that
a geographical shift in distribution will not ameliorate the costs of elevated CO2. By comparison,
adult kingfish have a peak distribution at 22.5 ◦C in Australian waters and display seasonal shifts
away from warmer waters [83], suggesting that at present, they avoid warmer temperatures and the
higher metabolic costs they incur. Nonetheless, an overall increase in average temperature is predicted
for the end of the century, which would force even greater distribution shifts to avoid an increased
metabolic cost.

In contrast to
.

MO2Rest, neither
.

MO2Max nor aerobic scope of larval kingfish was significantly
affected by elevated CO2 or temperature. In other marine fishes, the effects of CO2 on

.
MO2Max and

aerobic scope have been diverse, with many species showing no effect [54], but some increases [53]
and decreases [14] have been observed. Therefore, our results are consistent with most previous
studies. By contrast, temperature tends to increase

.
MO2Max [52], although decreases in

.
MO2Max

have been observed in some tropical fish species, likely because they live closer to their thermal
limits than temperate species [84]. Aerobic scope has shown a strong species-dependence in response
to elevated temperature as well [11,84]. It is possible that we did not detect an effect of elevated
temperature on

.
MO2Max or aerobic scope because there was higher individual variation in

.
MO2Max in

the elevated temperature treatment as compared with controls, which may have masked a significant
effect. This high variability could represent true inter-individual differences in

.
MO2Max, but could also

be indicative of differential recovery times from the exhaustive chase. Still, our results suggest that
elevated CO2 and temperature are unlikely to have a meaningful impact on

.
MO2Max or aerobic scope

in yellowtail kingfish, which is consistent with findings for many other species of marine fishes [11].
The increase in

.
MO2Rest in conjunction with the lack of change in

.
MO2Max and aerobic scope

suggests that, while there are higher maintenance costs under elevated CO2 and temperature
conditions, this does not diminish the capacity of fish to perform aerobic activities. However, while
the overall capacity for aerobic activity did not diminish,

.
MO2Rest comprises a larger proportion of

the aerobic scope at higher CO2 and temperature conditions than under ambient conditions. Thus,
a smaller fraction of the metabolic scope is available for aerobic activities such as growth, development,
and reproduction. This is relevant because fish in this experiment were fed ad libitum with highly
nutritious food, meaning that they could easily meet the higher energy requirements of fast growth.
In nature, food distribution is more patchy and unreliable, making it more difficult for fish to meet
higher energetic demands. Therefore in food-scarce environments, we might expect to see a decline in
aerobic scope at higher temperatures [76].

We observed opposing relationships between boldness and
.

MO2Rest under elevated versus
ambient temperature treatments. Under elevated temperature, bolder individuals had a higher

.
MO2Rest, while under ambient temperature, bolder individuals had a lower

.
MO2Rest. Correlations

between boldness and
.

MO2Rest have been observed previously [40], and two models have been
proposed to explain these patterns. The “performance model” posits that bolder individuals will
consume more energy, and thus require a higher resting oxygen uptake rate to support their higher
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metabolic needs [56]. The performance model predicts a positive relationship between
.

MO2Rest and
boldness. Conversely, the “allocation model” is based on the idea that organisms have a finite supply
of energy and must balance their energy budget between

.
MO2Rest and boldness-related activities [56].

This model predicts a negative relationship between
.

MO2Rest and boldness. The performance model
has broader support from experimental evidence than the allocation model [40], and our results
support the performance model under elevated temperature. However, we observed a negative
relationship between

.
MO2Rest and boldness under ambient temperature conditions. It is possible that

the allocation model holds for this population under ambient temperature, and that the performance
model applies under elevated temperature. Indeed, it has been suggested that environmental stressors
such as temperature can alter the relationship between behavioral and physiological traits [58]. Still,
the proximal cause for this shift from a positive to a negative relationship is not clear, and represents a
fruitful avenue for future research.

Importantly, our results show that boldness and
.

MO2Rest have opposing relationships under
different thermal, but not CO2, regimes. The implication of this pattern is that different thermal regimes
could have opposing influences on selection, driving changes in rates of adaptation to environmental
change. We cannot predict with certainty the direction that selection will take, as the relative benefits of
having a higher

.
MO2Rest or boldness will depend upon environmental factors such as food availability

and predator density. Still, both boldness [85,86] and aerobic scope [87] have shown heritability in
fishes, suggesting that their correlation could indeed influence the rate and direction of adaptation.

A similar relationship between
.

MO2Max and boldness was also detected, with bolder individuals
having a lower

.
MO2Max at ambient temperature, but the relationship disappeared under elevated

temperature. The links between
.

MO2Max and behavioral traits have been relatively understudied, and
there are no models to explain the underlying causes of such patterns. However,

.
MO2Rest and

.
MO2Max

have shown correlations in fishes [88], suggesting that the similar relationships that we saw between
.

MO2Rest and
.

MO2Max with boldness are plausible.
In conclusion, this study indicates that elevated temperature has a greater effect than elevated

CO2 levels on the behavior, physiology, and correlations between behavior and physiology of larval
kingfish. At elevated temperature, larval kingfish displayed elevated activity levels and

.
MO2Rest,

indicating a higher cost of living. However, the overall effect of these traits will ultimately depend
upon the distribution and abundance of predators and food sources for the larval fish. It is likely that
as ocean warming progresses, kingfish will shift their distributions polewards to avoid incurring the
metabolic and behavioral costs associated with warmer waters, as has been documented in a range
of marine species [89]. Unlike temperature, pCO2 does not have a strong latitudinal gradient, and
thus rising CO2 levels cannot be avoided through range shifts. This implies that kingfish may still
experience increased metabolic costs in future climatic conditions, unless they can adapt to elevated
CO2. Further work is needed to determine whether variation in

.
MO2Rest to elevated CO2 is heritable,

and thus whether adaptation is possible. Our results also showed correlations between
.

MO2Rest and
boldness that were temperature-dependent. These opposing correlations could influence the rate
and direction of future adaptation, but their consequences will depend on additional factors such
as predation risk and food availability. Future work could include additional stressors to determine
the relative benefits of boldness and

.
MO2Rest, revealing the evolutionary implications of climate

change. Our findings provide novel insights into the behavioral and physiological impacts of future
climate conditions on the early life stages of a large pelagic fish, a critical knowledge gap in climate
change research.
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