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Tropical reforestation and climate change: beyond
carbon
Bruno Locatelli1,2,3, Carla P. Catterall4, Pablo Imbach5, Chetan Kumar6, Rodel Lasco7, Erika
Marín-Spiotta8, Bernard Mercer9, Jennifer S. Powers10,11, Naomi Schwartz12, Maria Uriarte12

Tropical reforestation (TR) has been highlighted as an important intervention for climate change mitigation because of its
carbon storage potential. TR can also play other frequently overlooked, but significant, roles in helping society and ecosystems
adapt to climate variability and change. For example, reforestation can ameliorate climate-associated impacts of altered
hydrological cycles in watersheds, protect coastal areas from increased storms, and provide habitat to reduce the probability
of species’ extinctions under a changing climate. Consequently, reforestation should be managed with both adaptation and
mitigation objectives in mind, so as to maximize synergies among these diverse roles, and to avoid trade-offs in which the
achievement of one goal is detrimental to another. Management of increased forest cover must also incorporate measures for
reducing the direct and indirect impacts of changing climate on reforestation itself. Here we advocate a focus on “climate-smart
reforestation,” defined as reforesting for climate change mitigation and adaptation, while ensuring that the direct and indirect
impacts of climate change on reforestation are anticipated and minimized.
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Implications for Practice

• Tropical reforestation has a clearly recognized potential
for mitigating climate change, but its role in reducing vul-
nerability to climate change should also be acknowledged.

• Climate-smart reforestation should be promoted, that is,
reforesting for climate change mitigation and adapta-
tion, while ensuring that the direct and indirect impacts
of climate change on reforestation are anticipated and
minimized.

• Reforestation practices should be designed to avoid the
implementation of one strategy (mitigation or adaptation)
to the detriment of the other.

• Adequate climate policy or institutional arrangements
and appropriate technical assistance and information
are needed if managers are to pursue the objectives of
climate-smart reforestation.

• Climate-smart reforestation should be integrated into
broader disaster risk reduction programs, adaptation
strategies, and landscape management plans.

Introduction

In many tropical regions where large areas of forest have his-
torically been cleared for agriculture, reforestation, including
natural regeneration, assisted restoration, enrichment plant-
ing, native tree plantations, commercial plantations, and agro-
forestry systems, is creating new opportunities and challenges in
the context of climate change (Chazdon 2008). For example, the
endorsers of the Declaration on Forests of the New York Climate
Summit (September 2014) collectively committed to doing their

part to restore 150 million hectares globally by 2020 and 350
million hectares by 2030. Another example is the Bonn Chal-
lenge (www.bonnchallenge.org), a global aspiration to restore
150 million hectares of the world’s degraded and deforested
lands by 2020.

Because tropical deforestation has been a large contributor
of greenhouse gas emissions, reverting these lands to forests
has a clearly recognized potential for recovering stocks of
biomass-stored carbon (Houghton 2012). Compared with other
climate mitigation practices, some forest restoration options can
offer a low-cost approach to reducing greenhouse gas emissions
(Turner et al. 2009). However, although many global commit-
ments to reforestation are motivated by climate objectives, tree
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Tropical reforestation beyond carbon

planting for mitigating climate change is still controversial, with
recent debates on the cooling and warming effects of reforesta-
tion (Verchot 2014).

Viewing tropical reforestation (TR) primarily as a means
of mitigating climate change through carbon sequestra-
tion overlooks a suite of other roles such as regulation of
land–atmosphere interactions, ecosystem services mediated
by biota (e.g. pollination), and societal adaptation to climate
variability and change. These roles are particularly important
because development, adaptation to climate change, the reduc-
tion of forest cover loss, and the conservation of ecosystem
services present more challenges and opportunities in the
tropics than elsewhere (Harvey et al. 2014).

In this “Policy Perspectives” paper, we argue that carbon
sequestration is only one of multiple strategies for mitigat-
ing and adapting to climate change through reforestation. We
describe the variety of links and feedbacks between reforesta-
tion and climate change in tropical regions, consider their impor-
tance to decision-making, introduce a conceptual framework for
climate-smart reforestation, and discuss its management impli-
cations. We consider only carbon capture and storage briefly as
our main purpose is to explore these other aspects rather than
to review well-established information about carbon-focused
reforestation.

TR for Mitigating Climate Change

Beyond its role in mitigating climate change through car-
bon storage, reforestation of tropical landscapes influences
global and regional climates through a range of mechanisms
(Table 1).

Reforestation has biophysical effects on climate, which,
depending on their magnitude and direction, can contribute
to climate change mitigation. Globally, these effects include
changes in surface albedo, surface roughness, canopy conduc-
tance, evapotranspiration, and volatile organic compound emis-
sions. The net overall result of all these changes can be either
climatic warming (Kirschbaum et al. 2011) or cooling (Zhao &
Jackson 2014), depending on latitude. In boreal forests, refor-
estation may cause a net increase in regional temperatures
through albedo effects, whereas in the tropics, the most likely
net effect is cooling (Anderson et al. 2011).

Large-scale reforestation can also affect precipitation locally,
regionally, and in faraway places (Swann et al. 2012). At the
regional and continental scale, forests recycle rainfall and gen-
erate flows of atmospheric water vapor (Ellison et al. 2012),
which may also mitigate the effects of warming in arid regions,
although generalizations are difficult to make and controversies
are frequent (van der Ent et al. 2012). However, further research

Table 1. Types and examples of contributions of tropical reforestation (TR) to climate change mitigation and adaptation to climate variations (either climate
variability or climate change), for which some evidence is available.

Type of Contribution Description of Contribution Example Reference

Mitigating climate change globally and regionally
Carbon capture and storage TR has high carbon sequestration potential Silver et al. (2000)
Bioenergy and products TR can reduce emissions by substituting plantation wood for

fossil fuels or carbon-intensive materials
Righelato and Spracklen (2007)

Reduced pressure on forests TR reduce harvesting pressure on remnant older growth forests
and their carbon stocks

Carnus et al. (2006)

Biophysical cooling TR creates regional cooling as a result of changes in
evapotranspiration, surface roughness and albedo

Anderson et al. (2011)

Regional climate regulation TR reduces warming and drying in arid regions Oguntunde et al. (2014)
Protecting rural economies from impacts of climate variation
Livelihood diversification Livelihood diversification with forest products is an

anticipatory strategy used by communities to reduce their
sensitivity to climate variations

Paavola (2008)a

Safety nets Forest products are used by communities during and after
extreme events to cope and recover

McSweeney (2005)a

Microclimate and agriculture TR improves the resilience of crop production to climate
variations

Sendzimir et al. (2011)

Reducing impacts of climatic variation on water cycle and associated human uses
Base flow conservation TR increases dry season flow of streams and reduces impacts

of drought
Scott et al. (2005)

Flood control TR reduces frequency and severity of flood-related catastrophes Bradshaw et al. (2007)a

Reducing local impacts of extreme weather events on society and ecosystems
Heat waves Urban trees moderate the health impacts of heat waves Bowler et al. (2010)
Coastal protection Planted mangroves protect coastal settlements against storms

and waves
Adger (1999)

Landslide protection Forest regeneration stabilizes hillsides and reduces landslides Robledo et al. (2004)
Reducing impacts of climate change on biodiversity
Landscape connectivity Forested habitat corridors facilitate species dispersal under

climate change scenarios
Imbach et al. (2013)a

Refugia and habitat provision TR provides habitat refugia for climate-sensitive species of
conservation significance

Shoo et al. (2011)

aThese examples are not specific to reforestation but general to forests.
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is needed to better understand the potential for undesirable feed-
backs such as altered precipitation in other regions (Swann et al.
2012).

Reforestation can also contribute to climate change mitiga-
tion through the sustainable production and use of forest prod-
ucts. For example, wood or biofuels from tropical plantations
can substitute for energy or materials that are currently respon-
sible for large greenhouse gas emissions to the atmosphere
(Lippke et al. 2011).

TR for Adapting to Climate Change

Well-managed reforestation can contribute to adaptation to cli-
mate change by reducing the vulnerability of people and ecosys-
tems to current climate hazards and future climate change
(Doswald et al. 2014). This may occur through a variety of path-
ways (Table 1). First, TR can enhance livelihood diversification,
and thereby provide a safety net to increase the resilience of rural
households to climate variations. For example, when agriculture
is affected by drought, reforested areas can supply products such
as firewood, wild fruits, mushrooms, and fodder to provide alter-
native sources of food, materials, and income (Pramova et al.
2012b).

Second, TR can buffer against climate change and variability
and protect water supplies for agriculture and other human uses
by stabilizing catchment hydrology, increasing base flow during
drought, reducing flooding during rainfall events, and improving
water quality. However, reforestation plans also need to recog-
nize that reforestation of different types (i.e. successional stage,
natural regrowth vs. plantations of native or exotic species)
can lead to a variety of consequences for catchment-scale
water cycles (Uriarte et al. 2011; Ponette-González et al. 2014).
Reforestation often increases infiltration more than transpira-
tion, increasing run-off and base flow during the dry season
(Bruijnzeel 2004; Ogden et al. 2013). On the other hand, plant-
ing fast-growing exotic species with high transpiration rates
often reduces run-off (Locatelli & Vignola 2009), which may
cause water shortages, particularly in dry areas (Hodgman et al.
2012). The role of reforestation in reducing storm flow is unclear
in large watersheds or for extreme rainfall events (Keenan & Van
Dijk 2010). Greater understanding is needed of the effects of
the type and the spatial location of reforestation on hydrological
processes to enable better planning and management.

Third, TR can reduce the local impact of extreme weather
events on society and ecosystems. Restoring forest cover to
coastal areas and hillslopes can stabilize land against catas-
trophic movements associated with wave action and intense
run-off during storms and flood events (Table 1). Restoration of
even a sparse tree cover can also regulate microclimatic condi-
tions, which can limit urban populations’ exposure to heat waves
through shade and evaporative cooling, and protect agricultural
crops by controlling temperature, humidity, and exposure to
winds (Bowler et al. 2010).

Fourth, some types of reforestation can contribute signifi-
cantly to global biodiversity conservation by increasing species’
resilience to climate change, which will otherwise magnify

species’ declines that are already occurring because of ongo-
ing loss of forest habitat (Travis 2003). Increasing forest
cover in climate refugia can improve long-term persistence of
forest-dependent species, and reforestation can improve habi-
tat connectivity to facilitate migration of species along climatic
gradients (Carnus et al. 2006). Furthermore, biodiversity sus-
tained by reforestation has the potential to improve the cli-
mate resilience of ecosystem services such as crop pollina-
tion and pest control, as well as increasing future options and
as-yet-unknown benefits (e.g. from drug discovery), although
research into these processes has so far been largely restricted
to old growth rather than restored forest (Catterall et al. 2008;
Pawson et al. 2013; Thompson et al. 2014).

The ability of reforestation to perform this range of
climate-adaptation services will be influenced by the type
of reforestation and associated level of biodiversity as well as
by forest age, although these relationships are in need of further
study. For example, non-timber forest products are scarce in
industrial monoculture plantations but can be abundant in more
biodiverse plantations (Pawson et al. 2013), which also provide
better habitat quality for biodiversity conservation (Catterall
et al. 2008).

Climatic Threats to TR and Possible Adaptations

Climate change affects TR in multiple ways (Table 2). An
increased frequency of either very wet years or drought events
may influence the potential for achieving long-term tree cover
in areas that are marginal for forest growth (Holmgren et al.
2013). Altered temperature and precipitation, extreme events,
and increased atmospheric CO2 concentrations will all drive
changes in forest structure and species composition, because
new conditions will be physiologically unsuitable for some
previously occurring species, while favoring others (Chazdon
et al. 2005; Anderson-Teixeira et al. 2013). Climate change may
lead ecosystems to alternate stable states where forests are
replaced by shrublands or grasslands (Anderson-Teixeira et al.
2013).

These processes will directly affect TR through several mech-
anisms. Climate change may increase the likelihood of out-
breaks of forest pests and diseases (Pawson et al. 2013). It could
facilitate the spread of invasive species, potentially producing
both positive and negative effects, including threats to forest
recovery and contributions to the rate and volume of biomass
growth in the reforestation of marginal lands (Lawson & Mich-
ler 2014). Another factor relates to the consequences of changes
in local habitat suitability, which may require reconsidering the
choice of locally appropriate species. Effects can also relate to
disturbance regimes, such as the frequency or intensity of storms
or fires, which may impair reforestation success (Pawson et al.
2013).

Indirectly, decreased suitability of some areas for agriculture
may leave land available for future reforestation or increase the
competition between agricultural and forest land uses in areas
suitable for agriculture (Bradley et al. 2012), but in other loca-
tions agricultural abandonment could lead to forest regrowth.
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Table 2. Examples of direct and indirect impacts of climate change and climate variability on tropical reforestation.

Exposure Direct Impacts on Reforestation Indirect Impacts on Reforestation

Climate change and
variability

Changes in climate influence seedling establishment,
tree growth and mortality, and the distribution and
dynamics of invasive species, pests, seed dispersers,
and pollinators

Human responses to climate change (e.g.
migration, displacement of agriculture) affect
areas available for reforestation

Climate-related policies
and market changes

Forest-related climate policies (e.g. REDD+, adaptation
plans) create a demand for carbon sequestration or
adaptation services (e.g. watershed protection) and
incentivize reforestation

Changes in energy policies and biofuel demand
affect land availability for reforestation or
create incentives for woody biomass production

In a changed climate, reforestation methods will benefit from
a range of adjustments (Harris et al. 2006). Impacts can be
reduced or buffered by interventions to manage fire and pests,
irrigation and phytosanitary treatments (Guariguata et al. 2008);
modifying silvicultural practices such as species selection, thin-
ning, or tree density can reduce the sensitivity of reforestation to
climate change and variability; and the resilience of plantation
forests to disturbance events may be increased by actions such
as incorporating increased diversity of tree species or habitats
(Pawson et al. 2013; Thompson et al. 2014).

The emergence of forest-related policy and market mecha-
nisms such as REDD+ or adaptation plans will also directly
affect reforestation, by creating incentives and influencing
choices of management practices or species. Furthermore,
policies and markets will indirectly affect reforestation through
societal efforts to deal with climate change in other spheres of
activity (Pawson et al. 2013). For example, increasing demand
for bioenergy as a mitigation option could either favor refor-
estation as a source of wood energy or reduce reforestation
though increased land competition from biofuel crops (Brodie
et al. 2012).

Policies and Management for Climate-Smart
Reforestation

Given the wide range of opportunities for reforestation to con-
tribute to both adaptation and mitigation, together with the need
to identify and minimize climate-related threats to reforestation
processes, there is a pressing need to adjust reforestation prac-
tices and policies to suit a changing climate. Such adjustment
constitutes the strategic adoption of “climate-smart reforesta-
tion,” here defined as reforesting for climate change mitiga-
tion and adaptation, while ensuring that the direct and indirect
impacts of climate change on reforestation are anticipated and
minimized (Fig. 1). Given the multiple possible trade-offs, the
challenge for climate-smart reforestation is to implement an
effective combination of approaches to meet all three objec-
tives: societal adaptation, climate mitigation, and ecological
resilience.

Existing policy instruments address these three objectives
individually and to differing extents. The role of TR in miti-
gation has been recognized by the Clean Development Mech-
anism (CDM) of the Kyoto Protocol, which has rewarded 55
afforestation and reforestation projects in developing countries

Figure 1. Conceptual framework of climate-smart reforestation:
reforestation management contributes to the adaptation of society to
climate variations (1) and climate change mitigation (2), while ensuring
that reforestation is resilient to the direct and indirect impacts of climate
variations (3).

(UNFCCC 2014). Currently high in the international agenda
on climate change, the REDD+ initiative (Reducing Emis-
sions from Deforestation and forest Degradation) includes the
enhancement of forest carbon stocks, and many tropical coun-
tries have included reforestation activities in their REDD+
strategies (Salvini et al. 2014). The place of reforestation in
adaptation policy is less developed, although several adaptation
plans (such as the National Adaptation Programmes of Action,
NAPAs, prepared by least developed countries) do consider
the role of reforestation in adaptation. For example, Comoros’
NAPA proposes watershed rehabilitation with multiple-use
plantations, restoration of degraded forests, and agroforestry to
respond to the identified vulnerability of local communities to
climate variations and shortages of water, firewood, and timber
(Pramova et al. 2012a). Some of these reforestation activities
also integrate measures to improve ecological resilience (Reyer
et al. 2009).

However, as most policies consider the three objectives
of climate-smart reforestation separately, they often overlook
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possible trade-offs and synergies. For example reforestation
projects managed with a carbon purpose could have detrimen-
tal consequences on water availability in the semi-arid trop-
ics (Trabucco et al. 2008) or on biodiversity (O’Connor 2008).
By contrast, reforestation that is explicitly climate smart uses
a multi-objective planning focus that enables different objec-
tives to reinforce each other so that their interactions produce
synergies rather than trade-offs. For example, tree regenera-
tion in Tanzania under the Ngitili resource management sys-
tem achieves carbon storage together with improved watershed
conservation and greater provision of natural resources (water,
food, and fodder) for livelihoods (Duguma et al. 2014). A pro-
posed adaptation project in Colombia aims to reforest with
flood-resistant native tree species to reduce flood impacts on
downstream communities (UNDP 2012). A project in Costa
Rica is testing different mixes of species and silvicultural prac-
tices to reduce vulnerability to storms and fires while also
achieving carbon storage (Locatelli et al. 2011).

Likewise, with respect to reforestation and restoration man-
agement practices, methods and guidelines have been devel-
oped with different objectives in mind (Ashton et al. 2001).
Thus, a given method may exist to: enhance supporting services
(e.g. improve nutrient cycling and soils by planting multiple
tree species, fostering ground covers or inoculating with soil
fauna from natural forests); conserve water (e.g. by ensuring a
closed canopy or avoiding species with high water use); increase
biomass production (with appropriate selection of species and
management intensity); or ensure resilience (e.g. with diverse
tree communities) (Thompson et al. 2014). Depending on the
context, some of these methods could contribute to the three
objectives of climate-smart reforestation, but trade-offs also
need to be recognized and managed (Simonit & Perrings 2013).
For example, tree mixes can store as much carbon as mono-
cultures, be more resilient and provide additional ecosystem
services (Hulvey et al. 2013) but can also have higher rates of
water use (Kunert et al. 2012). To aid this process in the face of
uncertainties, the implementation of reforestation management
needs to be coupled with monitoring and adaptive management
(Millar et al. 2007).

The implementation of climate-smart reforestation is limited
by several knowledge gaps. One example is about the crite-
ria that natural resources managers would use to select species
for reforestation that meets multiple objectives. Many reforesta-
tion efforts in tropical regions have used a limited number of
species (e.g. Tectona grandis, Eucalyptus spp., and Pinus spp.),
in part because of limited available guidance for species selec-
tion and limited knowledge on other potentially productive and
resilient species. The choice of exotic versus native species is
an important topic, as there is an inherent tension between con-
cerns of biodiversity and reforestation success (e.g. when native
species cannot establish in degraded sites or when an exotic
species appears more adapted to the future local climate than
native ones). There is limited knowledge on the response of TR
species and ecosystems to climate change, e.g. the characteriza-
tion of effect and response traits (Suding et al. 2008), and on the
ecosystem services produced by reforestation in the tropics (De
Groot & Van der Meer 2010).

Capacity building would allow managers to examine out-
comes of reforestation under a range of climate scenarios and to
use improved knowledge, approaches, and tools for integrated
assessments of issues such as biophysical and biogeochemical
cooling or warming effects, effects on rainfall, and contributions
to societal adaptation and biodiversity conservation. Capacity
and tools would also allow them to decide among reforestation
alternatives, e.g. between passive (i.e. natural regeneration) and
active options.

In climate-smart reforestation, the scale of benefits is global
for mitigation but local or regional for adaptation. As beneficia-
ries are generally different from reforestation managers, ade-
quate climate policy and institutional arrangements, as well as
involvement of local communities, are essential to ensure that
this mismatch of scales does not limit achievement of bene-
fits. Currently, policy instruments for climate change mitigation
and adaptation provide limited incentives with often high trans-
action costs to reforestation managers, the Clean Development
Mechanism being a clear example (Locatelli & Pedroni 2006).
Timber value is often more valuable as an incentive than the
value of the carbon stored, but, in some cases, carbon incen-
tives can provide additional revenues that move a plantation
project above a profitability threshold. In addition, the increas-
ing recognition of the role of forests in adaptation, e.g. through
watershed stabilization, has raised interest in the development of
economic incentives, such as payment for ecosystem services
for adaptation (Wertz-Kanounnikoff et al. 2011). Even though
they are currently marginal, climate change incentives can influ-
ence decision-making about species or management practices
(Olschewski & Benitez 2010) or allow an active management of
spontaneous reforestation for enhancing the contribution of sec-
ond growth forests to climate change adaptation and mitigation.

Climate-smart reforestation also has reciprocal relationships
with other sectors of climate change adaptation and mitigation.
The relative contribution of reforestation can be minor com-
pared with these other sectors, but is often complementary to
them. For example, coastal or watershed reforestation alone can-
not guarantee complete protection from extreme events, but is
effective as part of a broader disaster risk reduction, and adapta-
tion strategy (Baird et al. 2009). The contribution of reforesta-
tion to mitigation is also linked to other sectors, e.g. building
or energy sectors, through the production of bioenergy and bio-
materials. These intersectoral links can also lead to the develop-
ment of incentives for climate-smart reforestation such as pay-
ment for carbon or watershed protection.

Conclusions

Adaptation and mitigation are considered separately in inter-
national climate change policies, and in most national or sub-
national initiatives. However, some activities can significantly
contribute to both objectives in a manner that may produce
either synergies or trade-offs. TR is one such activity, and there-
fore needs to be managed with both adaptation and mitigation
objectives in mind, to avoid the implementation of one strategy
to the detriment of the other. Furthermore, the management of
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increased forest cover needs to incorporate measures for reduc-
ing the direct and indirect impacts of climate change and vari-
ability on reforestation. Yet the achievement of climate-smart
reforestation is currently limited by a range of uncertainties and
knowledge gaps. Improved knowledge will help managers make
informed decisions adapted to local specificities.

Finally, larger climate-smart landscape management or rural
development initiatives in tropical regions (Harvey et al. 2014)
would be strengthened by the inclusion of a component aimed at
climate-smart reforestation, based on the principles considered
here. The Bonn Challenge and the Declaration on Forests of
the New York Climate Summit are excellent opportunities for
a global effort toward climate-smart reforestation.
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